[10] | 1 | %JACSIMDISTM Jaccard-like Distance Matrix based on Similarities; |
---|
| 2 | % |
---|
| 3 | % D = JACSIMDISTM (A,B) |
---|
| 4 | % OR |
---|
| 5 | % D = JACSIMDISTM (A) |
---|
| 6 | % |
---|
| 7 | % INPUT |
---|
| 8 | % A NxK Matrix or dataset |
---|
| 9 | % B MxK Matrix or dataset (optional; default: B=A) |
---|
| 10 | % |
---|
| 11 | % OUTPUT |
---|
| 12 | % D NxM Dissimilarity matrix or dataset; D in [0,1] |
---|
| 13 | % |
---|
| 14 | % DESCRIPTION |
---|
| 15 | % Computes the distance matrix D between two sets of vectors, A and B. |
---|
| 16 | % Distances between vectors X and Y are computed based on the similarity |
---|
| 17 | % formula: |
---|
| 18 | % SIM(X,Y) = (X'Y) / (||X||^2 + ||Y||^2 - ||x||*||y||) |
---|
| 19 | % D(X,Y) = SQRT(1 - SIM(X,Y)) |
---|
| 20 | % This is an extension of the binary Jaccard distance. |
---|
| 21 | % |
---|
| 22 | % If A and B are datasets, then D is a dataset as well with the labels defined |
---|
| 23 | % by the labels of A and the feature labels defined by the labels of B. If A is |
---|
| 24 | % not a dataset, but a matrix of doubles, then D is also a matrix of doubles. |
---|
| 25 | % |
---|
| 26 | % DEFAULT |
---|
| 27 | % B = A |
---|
| 28 | % |
---|
| 29 | % SEE ALSO |
---|
| 30 | % SIMDISTM, CORRDISTM, COSDISTM, LPDISTM, EUDISTM |
---|
| 31 | |
---|
| 32 | % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com |
---|
| 33 | % Faculty EWI, Delft University of Technology and |
---|
| 34 | % School of Computer Science, University of Manchester |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | |
---|
| 38 | function D = jacsimdistm(A,B) |
---|
| 39 | bisa = nargin < 2; |
---|
| 40 | if bisa, |
---|
| 41 | B = A; |
---|
| 42 | end |
---|
| 43 | |
---|
| 44 | isda = isdataset(A); |
---|
| 45 | isdb = isdataset(B); |
---|
| 46 | a = +A; |
---|
| 47 | b = +B; |
---|
| 48 | |
---|
| 49 | [ra,ca] = size(a); |
---|
| 50 | [rb,cb] = size(b); |
---|
| 51 | |
---|
| 52 | if ca ~= cb, |
---|
| 53 | error ('Matrices should have equal numbers of columns'); |
---|
| 54 | end |
---|
| 55 | |
---|
| 56 | aa = sum(a.*a,2); |
---|
| 57 | bb = sum(b.*b,2)'; |
---|
| 58 | D = (a*b') ./ (aa(:,ones(rb,1)) + bb(ones(ra,1),:) - sqrt(aa(:,ones(rb,1)) .* bb(ones(ra,1),:))); |
---|
| 59 | D = sqrt(1 - D); |
---|
| 60 | |
---|
| 61 | % Check numerical inaccuracy |
---|
| 62 | D (find (D < eps)) = 0; % Make sure that distances are nonnegative |
---|
| 63 | if bisa, |
---|
| 64 | D = 0.5*(D+D'); % Make sure that distances are symmetric for D(A,A) |
---|
| 65 | end |
---|
| 66 | |
---|
| 67 | % Set object labels and feature labels |
---|
| 68 | if xor(isda, isdb), |
---|
| 69 | prwarning(1,'One matrix is a dataset and the other not. ') |
---|
| 70 | end |
---|
| 71 | if isda, |
---|
| 72 | if isdb, |
---|
| 73 | D = setdata(A,D,getlab(B)); |
---|
| 74 | else |
---|
| 75 | D = setdata(A,D); |
---|
| 76 | end |
---|
| 77 | D.name = 'Distance matrix'; |
---|
| 78 | if ~isempty(A.name) |
---|
| 79 | D.name = [D.name ' for ' A.name]; |
---|
| 80 | end |
---|
| 81 | end |
---|
| 82 | return |
---|