source: distools/intrdim.m @ 69

Last change on this file since 69 was 10, checked in by bduin, 14 years ago
File size: 982 bytes
RevLine 
[10]1%INTRDIM Estimate Intrinsic dimension from dissimilarity data
2%
3%       K = INTRDIM(D)
4%
5% INPUT
6%   D   NxN Dissimilarity dataset
7%
8% OUTPUT
9%   K   Estimated intrinsic dimension
10%
11% DESCRIPTION
12% It is assumed that the data is generated from a normal distribution
13% in K dimensions and that the Eulcidean distance measure has been used
14% to compute D.
15% Do NOT supply squared distances! They will definitely generate the wrong
16% result.
17%
18% EXAMPLE
19% A = GENDATB(100);
20% D = SQRT(DISTM(A));
21% K = INTRDIM(D);
22%
23% A = GENDATD(100,10);
24% D = SQRT(DISTM(A*SCALEM(A,'VARIANCE')));
25% K = INTRDIM(D);
26%
27
28% Copyright: R.P.W. Duin, r.p.w.duin@prtools.org
29% Faculty EWI, Delft University of Technology
30% P.O. Box 5031, 2600 GA Delft, The Netherlands
31
32function k = intrdim(d)
33
34d = +d.^2;
35[m,n] = size(d);
36
37% Assume selfreflecting dissim matrix
38if m==n & all(diag(+d) == 0) 
39        d(1:n+1:n*n) = [];
40end
41
42k = round(2*(mean(d(:)).^2)/var(d(:))); % based on Chi square distribution
Note: See TracBrowser for help on using the repository browser.