1 | %HAUSDMA Asymmetric Hausdorff and modified Hausdorff distance between datafiles of image blobs |
---|
2 | % |
---|
3 | % [DH,DM] = HAUSDMA(A,B) |
---|
4 | % |
---|
5 | % INPUT |
---|
6 | % A Datafile of NA binary images |
---|
7 | % B Datafileof of NB binary images |
---|
8 | % |
---|
9 | % OUTPUT |
---|
10 | % DH NAxNB Hausdorff distance matrix |
---|
11 | % DM NAxNB Modified Hausdorff distance matrix |
---|
12 | % |
---|
13 | % DESCRIPTION |
---|
14 | % Computes a Hausdorff distance matrix DH and a modified Hausdorff distance |
---|
15 | % matrix DM between the datafiles of binary images A and B. |
---|
16 | % DH = MAX_B(MIN_A(D_AB)), DM = MEAN_B(MIN_A(D_AB)) |
---|
17 | % Preferably, NA <= NB (faster computation). |
---|
18 | % Progress is reported in fid (fid = 1: on the sreeen). |
---|
19 | % |
---|
20 | % LITERATURE |
---|
21 | % M.-P. Dubuisson and A.K. Jain, "Modified Hausdorff distance for object matching", |
---|
22 | % International Conference on Pattern Recognition, vol. 1, 566-568, 1994. |
---|
23 | % |
---|
24 | |
---|
25 | % Copyright: R.P.W. Duin, r.duin@ieee.org |
---|
26 | % Faculty of EWI, Delft University of Technology |
---|
27 | |
---|
28 | |
---|
29 | function [dh,dm] = hausdm(A,B) |
---|
30 | |
---|
31 | |
---|
32 | na = size(A,1); |
---|
33 | nb = size(B,1); |
---|
34 | dh = zeros(na,nb); |
---|
35 | dm = zeros(na,nb); |
---|
36 | s1 = sprintf('Hausdorff distances from %i objects: ',na); |
---|
37 | prwaitbar(na,s1) |
---|
38 | A = data2im(A); |
---|
39 | B = data2im(B); |
---|
40 | for i=1:na |
---|
41 | prwaitbar(na,i,[s1 int2str(i)]); |
---|
42 | a = A{i}; |
---|
43 | if ~isempty(a) |
---|
44 | a = bord(a,0); |
---|
45 | end |
---|
46 | ca = contourc(a,[0.5,0.5]); |
---|
47 | J = find(ca(1,:) == 0.5); |
---|
48 | ca(:,[J J+1]) =[]; |
---|
49 | ca = ca - repmat([1.5;1.5],1,size(ca,2)); |
---|
50 | ca = ca/max(ca(:)); |
---|
51 | ca = ca - repmat(max(ca,[],2)/2,1,size(ca,2)); |
---|
52 | %s2 = sprintf('Hausdorff distances to %i objects: ',nb); |
---|
53 | %prwaitbar(nb,s2) |
---|
54 | for j = 1:nb |
---|
55 | %prwaitbar(na,j,[s2 int2str(j)]); |
---|
56 | b = B{j}; |
---|
57 | if ~isempty(b) |
---|
58 | b = bord(b,0); |
---|
59 | end |
---|
60 | cb = contourc(b,[0.5,0.5]); |
---|
61 | J = find(cb(1,:) == 0.5); |
---|
62 | cb(:,[J J+1]) =[]; |
---|
63 | cb = cb - repmat([1.5;1.5],1,size(cb,2)); |
---|
64 | cb = cb/max(cb(:)); |
---|
65 | cb = cb - repmat(max(cb,[],2)/2,1,size(cb,2)); |
---|
66 | dab = sqrt(distm(ca',cb')); |
---|
67 | dh(i,j) = max(min(dab)); |
---|
68 | dm(i,j) = mean(min(dab)); |
---|
69 | end |
---|
70 | %prwaitbar(0); |
---|
71 | end |
---|
72 | prwaitbar(0); |
---|
73 | |
---|