[22] | 1 | %HAUSDMA Asymmetric Hausdorff and modified Hausdorff distance between datafiles of image blobs |
---|
| 2 | % |
---|
| 3 | % [DH,DM] = HAUSDMA(A,B) |
---|
| 4 | % |
---|
| 5 | % INPUT |
---|
| 6 | % A Datafile of NA binary images |
---|
| 7 | % B Datafileof of NB binary images |
---|
| 8 | % |
---|
| 9 | % OUTPUT |
---|
| 10 | % DH NAxNB Hausdorff distance matrix |
---|
| 11 | % DM NAxNB Modified Hausdorff distance matrix |
---|
| 12 | % |
---|
| 13 | % DESCRIPTION |
---|
| 14 | % Computes a Hausdorff distance matrix DH and a modified Hausdorff distance |
---|
| 15 | % matrix DM between the datafiles of binary images A and B. |
---|
[28] | 16 | % DH = MAX_B(MIN_A(D_AB)), DM = MEAN_B(MIN_A(D_AB)) |
---|
[22] | 17 | % Preferably, NA <= NB (faster computation). |
---|
| 18 | % Progress is reported in fid (fid = 1: on the sreeen). |
---|
| 19 | % |
---|
| 20 | % LITERATURE |
---|
| 21 | % M.-P. Dubuisson and A.K. Jain, "Modified Hausdorff distance for object matching", |
---|
| 22 | % International Conference on Pattern Recognition, vol. 1, 566-568, 1994. |
---|
| 23 | % |
---|
| 24 | |
---|
| 25 | % Copyright: R.P.W. Duin, r.duin@ieee.org |
---|
| 26 | % Faculty of EWI, Delft University of Technology |
---|
| 27 | |
---|
| 28 | |
---|
| 29 | function [dh,dm] = hausdm(A,B) |
---|
| 30 | |
---|
| 31 | |
---|
| 32 | na = size(A,1); |
---|
| 33 | nb = size(B,1); |
---|
| 34 | dh = zeros(na,nb); |
---|
| 35 | dm = zeros(na,nb); |
---|
| 36 | s1 = sprintf('Hausdorff distances from %i objects: ',na); |
---|
| 37 | prwaitbar(na,s1) |
---|
| 38 | A = data2im(A); |
---|
| 39 | B = data2im(B); |
---|
| 40 | for i=1:na |
---|
| 41 | prwaitbar(na,i,[s1 int2str(i)]); |
---|
| 42 | a = A{i}; |
---|
| 43 | if ~isempty(a) |
---|
| 44 | a = bord(a,0); |
---|
| 45 | end |
---|
| 46 | ca = contourc(a,[0.5,0.5]); |
---|
| 47 | J = find(ca(1,:) == 0.5); |
---|
| 48 | ca(:,[J J+1]) =[]; |
---|
| 49 | ca = ca - repmat([1.5;1.5],1,size(ca,2)); |
---|
| 50 | ca = ca/max(ca(:)); |
---|
| 51 | ca = ca - repmat(max(ca,[],2)/2,1,size(ca,2)); |
---|
| 52 | %s2 = sprintf('Hausdorff distances to %i objects: ',nb); |
---|
| 53 | %prwaitbar(nb,s2) |
---|
| 54 | for j = 1:nb |
---|
| 55 | %prwaitbar(na,j,[s2 int2str(j)]); |
---|
| 56 | b = B{j}; |
---|
| 57 | if ~isempty(b) |
---|
| 58 | b = bord(b,0); |
---|
| 59 | end |
---|
| 60 | cb = contourc(b,[0.5,0.5]); |
---|
| 61 | J = find(cb(1,:) == 0.5); |
---|
| 62 | cb(:,[J J+1]) =[]; |
---|
| 63 | cb = cb - repmat([1.5;1.5],1,size(cb,2)); |
---|
| 64 | cb = cb/max(cb(:)); |
---|
| 65 | cb = cb - repmat(max(cb,[],2)/2,1,size(cb,2)); |
---|
| 66 | dab = sqrt(distm(ca',cb')); |
---|
| 67 | dh(i,j) = max(min(dab)); |
---|
| 68 | dm(i,j) = mean(min(dab)); |
---|
| 69 | end |
---|
| 70 | %prwaitbar(0); |
---|
| 71 | end |
---|
| 72 | prwaitbar(0); |
---|
| 73 | |
---|