%HAMDISTM Hamming Distance Matrix between Binary Vectors % % D = HAMDISTM(A,B) % OR % D = HAMDISTM(A) % % INPUT % A NxK Binary matrix or dataset % B MxK Binary matrix or dataset % % OUTPUT % D NxM Dissimilarity matrix or dataset % % DESCRIPTION % Hamming distance between sets of binary vectors. % If A and B are datasets, then D is a dataset as well with the labels defined % by the labels of A and the feature labels defined by the labels of B. If A is % not a dataset, but a matrix of doubles, then D is also a matrix of doubles. % % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com % Faculty EWI, Delft University of Technology and % School of Computer Science, University of Manchester function d = hamdistm(A,B) bisa = nargin < 2; if bisa, B = A; end isda = isdataset(A); isdb = isdataset(B); a = +A; b = +B; [ra,ca] = size(a); [rb,cb] = size(b); if ca ~= cb, error ('Matrices should have equal numbers of columns'); end if any(a~=0) | any(a~=1) | any(b~=0) | any(b~=1), error('Data should be binary.'); end D = zeros(ra,rb); for i=1:rb D(:,i) = sum((repmat(b(i,:),ra,1) ~= a),2); end % Set object labels and feature labels if xor(isda, isdb), prwarning(1,'One matrix is a dataset and the other not. ') end if isda if isdb, D = setdata(A,D,getlab(B)); else D = setdata(A,D); end D.name = 'Distance matrix'; if ~isempty(A.name) D.name = [D.name ' for ' A.name]; end end return