1 | %GENREP Generate a representation set |
---|
2 | % |
---|
3 | % DR = GENREP(D,M,OPT) |
---|
4 | % OR |
---|
5 | % [DR,DT] = GENREP(D,M) |
---|
6 | % |
---|
7 | % INPUT |
---|
8 | % D NxN dissimilarity dataset |
---|
9 | % M Cx1 vector or scalar |
---|
10 | % OPT 'include' or 'exclude' |
---|
11 | % |
---|
12 | % OUTPUT |
---|
13 | % DR - NxK dissimilarity dataset, if OPT = 'include' (DEFAULT); |
---|
14 | % K=CM or K=SUM(M) |
---|
15 | % - [N-K]xK dissimilarity dataset, if OPT = 'exlude'; |
---|
16 | % K=CM or K=SUM(M) |
---|
17 | % - KxK dissimilarity dataset, if there is no third parameter; |
---|
18 | % K=CM or K=SUM(M) |
---|
19 | % DT [N-K]xK remaining dissimilarity dataset, if there is no third |
---|
20 | % parameter; K=CM or K=SUM(M) |
---|
21 | % |
---|
22 | % DESCRIPTION |
---|
23 | % If M is a scalar then a representation set of M objects per class is |
---|
24 | % generated for the square (dis)similarity matrix D. D should be a dataset. |
---|
25 | % DR has C*M columns if D has C classes. If M is a vector of length C, |
---|
26 | % its elements determine the number of representation objects of the |
---|
27 | % corresponding classes. |
---|
28 | % |
---|
29 | % If there is no third parameter, K=CM or K=SUM(M) objects are chosen |
---|
30 | % for the represenation set. The resulting dissimilarity dataset DR is |
---|
31 | % KxK and the remaining DT is [N-K]xK. |
---|
32 | % If desired (OPT = 'exclude'), the objects used for the representation |
---|
33 | % set are excluded from D. Per default, they are included. |
---|
34 | % |
---|
35 | % DEFAULT |
---|
36 | % M = 1 |
---|
37 | % OPT = 'include' |
---|
38 | % |
---|
39 | |
---|
40 | % Copyright: Robert Duin, r.duin@ieee.org, and |
---|
41 | % Elzbieta Pekalska, ela.pekalska@googlemail.com |
---|
42 | % Faculty EWI, Delft University of Technology and |
---|
43 | % School of Computer Science, University of Manchester |
---|
44 | |
---|
45 | |
---|
46 | |
---|
47 | function [DR,DT] = genrep(D,N,str) |
---|
48 | |
---|
49 | if nargin < 3, |
---|
50 | str = 'include'; |
---|
51 | end |
---|
52 | if nargin < 2, |
---|
53 | N = 1; |
---|
54 | end |
---|
55 | |
---|
56 | nlab = getnlab(D); |
---|
57 | [m,k,c] = getsize(D); |
---|
58 | labels = getlab(D); |
---|
59 | if size(N) == 1 |
---|
60 | N = N*ones(1,c); |
---|
61 | end |
---|
62 | if length(N) ~= c |
---|
63 | error('Number of classes does not match the vector length.') |
---|
64 | end |
---|
65 | |
---|
66 | R = []; |
---|
67 | for j = 1:c |
---|
68 | J = find(nlab==j); |
---|
69 | if length(J) < N(j) |
---|
70 | error('More objects requested than supplied.') |
---|
71 | end |
---|
72 | L = randperm(length(J)); |
---|
73 | R = [R; J(L(1:N(j)))]; |
---|
74 | end |
---|
75 | |
---|
76 | strl = lower(str); |
---|
77 | if ~strcmp(strl,'exclude') & ~strcmp(strl,'include') |
---|
78 | error(['Unknown option demanded: ' str]) |
---|
79 | end |
---|
80 | |
---|
81 | if nargout == 1 |
---|
82 | L = [1:m]'; |
---|
83 | if strcmp(strl,'exclude') |
---|
84 | L(R) = []; |
---|
85 | else |
---|
86 | L = [R; setdiff(L,R)]; |
---|
87 | end |
---|
88 | DR = dataset(D(L,R),labels(L,:),'featlab',labels(R,:)); |
---|
89 | else |
---|
90 | if strcmp(strl,'exclude') |
---|
91 | error('EXCLUDE does not match here.') |
---|
92 | elseif strcmp(strl,'include') |
---|
93 | L = R; |
---|
94 | T = setdiff((1:m)',R); |
---|
95 | else |
---|
96 | ; |
---|
97 | end |
---|
98 | DR = dataset(D(L,R),labels(L,:),'featlab',labels(R,:)); |
---|
99 | DT = dataset(D(T,R),labels(T,:),'featlab',labels(R,:)); |
---|
100 | end |
---|
101 | return |
---|