[10] | 1 | %FLPDISTM lp (p > 0) (Non)-Metric Distance Matrix |
---|
| 2 | % |
---|
| 3 | % D = FLPDISTM (A,B,P) |
---|
| 4 | % OR |
---|
| 5 | % D = FLPDISTM (A,B) |
---|
| 6 | % OR |
---|
| 7 | % D = FLPDISTM (A,P) |
---|
| 8 | % OR |
---|
| 9 | % D = FLPDISTM (A) |
---|
| 10 | % |
---|
| 11 | % INPUT |
---|
| 12 | % A NxK Matrix or dataset |
---|
| 13 | % B MxK Matrix or dataset |
---|
| 14 | % P Parameter; P > 0 |
---|
| 15 | % |
---|
| 16 | % OUTPUT |
---|
| 17 | % D NxM Dissimilarity matrix or dataset |
---|
| 18 | % |
---|
| 19 | % DEFAULT |
---|
| 20 | % P = 1 |
---|
| 21 | % B = A |
---|
| 22 | % |
---|
| 23 | % DESCRIPTION |
---|
| 24 | % Fast computation of the distance matrix D between two sets of vectors, A and B. |
---|
| 25 | % This can ONLY be used for small sets A and B as the memory is significantly used |
---|
| 26 | % by computing 3D matrices of the size M x N x K. |
---|
| 27 | % Distances between vectors X and Y are computed using the lp distance: |
---|
| 28 | % d(X,Y) = (sum (|X_i - Y_i|.^P))^(1/P) |
---|
| 29 | % i |
---|
| 30 | % If P = Inf, then the max norm distance is computed: |
---|
| 31 | % d(X,Y) = max (|X_i - Y_i|) |
---|
| 32 | % |
---|
| 33 | % If A and B are datasets, then D is a dataset as well with the labels defined |
---|
| 34 | % by the labels of A and the feature labels defined by the labels of B. If A is |
---|
| 35 | % not a dataset, but a matrix of doubles, then D is also a matrix of doubles. |
---|
| 36 | % |
---|
| 37 | % DEFAULT |
---|
| 38 | % P = 1 |
---|
| 39 | % B = A |
---|
| 40 | % |
---|
| 41 | % REMARKS |
---|
| 42 | % P >= 1 => D is metric |
---|
| 43 | % P in (0,1) => D is non-metric; D.^P is metric and l1-embeddable |
---|
| 44 | % P = 1/2 => D is city block / Euclidean distance |
---|
| 45 | % |
---|
| 46 | % SEE ALSO |
---|
| 47 | % LPDISTM, EUDISTM |
---|
| 48 | % |
---|
| 49 | |
---|
| 50 | % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com |
---|
| 51 | % Faculty EWI, Delft University of Technology and |
---|
| 52 | % School of Computer Science, University of Manchester |
---|
| 53 | |
---|
| 54 | |
---|
| 55 | |
---|
| 56 | function D = flpdistm (A,B,p) |
---|
| 57 | bisa = 0; |
---|
| 58 | if nargin < 2, |
---|
| 59 | p = 1; |
---|
| 60 | B = A; |
---|
| 61 | bisa = 1; |
---|
| 62 | else |
---|
| 63 | if nargin < 3, |
---|
| 64 | if max (size(B)) == 1, |
---|
| 65 | p = B; |
---|
| 66 | bisa = 1; |
---|
| 67 | B = A; |
---|
| 68 | else |
---|
| 69 | p = 1; |
---|
| 70 | end |
---|
| 71 | end |
---|
| 72 | end |
---|
| 73 | |
---|
| 74 | if p <= 0, |
---|
| 75 | error ('The parameter p must be positive.'); |
---|
| 76 | end |
---|
| 77 | |
---|
| 78 | isda = isdataset(A); |
---|
| 79 | isdb = isdataset(B); |
---|
| 80 | a = +A; |
---|
| 81 | b = +B; |
---|
| 82 | [ra,ca] = size(a); |
---|
| 83 | [rb,cb] = size(b); |
---|
| 84 | |
---|
| 85 | if ca ~= cb, |
---|
| 86 | error ('The matrices should have the same number of columns.'); |
---|
| 87 | end |
---|
| 88 | |
---|
| 89 | D = zeros(ra,rb); |
---|
| 90 | if p < Inf, |
---|
| 91 | D = sum ((abs (repmat(permute(a,[1 3 2]), [1 rb 1]) - ... |
---|
| 92 | repmat(permute(b,[3 1 2]), [ra 1 1]))).^p,3).^(1/p); |
---|
| 93 | else |
---|
| 94 | D = max ((abs (repmat(permute(a,[1 3 2]), [1 rb 1]) - ... |
---|
| 95 | repmat(permute(b,[3 1 2]), [ra 1 1]))),[],3); |
---|
| 96 | end |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | % Check numerical inaccuracy |
---|
| 100 | D (find (D < eps)) = 0; % Make sure that distances are nonnegative |
---|
| 101 | if bisa, |
---|
| 102 | D = 0.5*(D+D'); % Make sure that distances are symmetric for D(A,A) |
---|
| 103 | end |
---|
| 104 | |
---|
| 105 | |
---|
| 106 | if xor(isda, isdb), |
---|
| 107 | prwarning(1,'One matrix is a dataset and the other not. The result is a matrix.') |
---|
| 108 | elseif isda & isdb, |
---|
| 109 | D = setdata(A,D,getlab(B)); |
---|
| 110 | D.name = 'Distance matrix'; |
---|
| 111 | if ~isempty(A.name) |
---|
| 112 | D.name = [D.name ' for ' A.name]; |
---|
| 113 | end |
---|
| 114 | else |
---|
| 115 | ; |
---|
| 116 | end |
---|
| 117 | return |
---|