source: distools/expdistm.m @ 69

Last change on this file since 69 was 10, checked in by bduin, 14 years ago
File size: 2.1 KB
RevLine 
[10]1%EXPDISTM  Exponential-type of Distance Matrix
2%
3%     D = EXPDISTM (A,B,R)
4%       or
5%     D = EXPDISTM (A,B)
6%       or
7%     D = EXPDISTM (A,R)
8%       or
9%     D = EXPDISTM (A)
10%
11% INPUT
12%   A   NxK Matrix or dataset
13%   B   MxK Matrix or dataset (optional; default: B=A)
14%   R   Parameter to scale the Gaussian function
15%       (optional; default: sqrt(N)*(max(max(A))- min(min(A))))
16%
17% OUTPUT
18%   D   NxM Dissimilarity matrix or dataset
19%
20% DESCRIPTION
21% Computes the distance matrix D between two sets of vectors, A and B.
22% Given the vectors X and Y, distances are computed as:
23%   D(X,Y) = 1 - exp (-(X-Y)'(X-Y)/R^2)
24%
25% If A and B are datasets, then D is a dataset as well with the labels defined
26% by the labels of A and the feature labels defined by the labels of B. If A is
27% not a dataset, but a matrix of doubles, then D is also a matrix of doubles.
28%
29% SEE ALSO
30% SIMDISTM, JACSIMDISTM, COSDISTM, CORRDISTM, LPDISTM, EUDISTM
31
32% Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com
33% Faculty EWI, Delft University of Technology and
34% School of Computer Science, University of Manchester
35
36
37function [D,r] = expdistm(A,B,r)
38[ra,ca] = size(A);
39
40bisa = 0;
41if nargin < 2,
42  bisa = 1;
43  r = (max(max(+A)) - min(min(+A)))*sqrt(ra);
44  B = A;
45  [rb,cb] = size(B);
46else
47  [rb,cb] = size(B);
48
49  if nargin < 3,
50    if max (rb,cb) == 1,
51      bisa = 1;
52      r = B;
53      B = A;
54      [rb,cb] = size(B);
55    else
56      r = (max(max(+A)) - min(min(+A)))*sqrt(ra);
57    end
58  end
59end
60
61
62if ~bisa & ca ~= cb,
63  error ('The matrices should have the same number of columns.');
64end
65
66isda = isa(A,'dataset');
67isdb = isa(B,'dataset');
68a = +A;
69b = +B;
70
71
72%d = zeros(ra,rb);
73%d = sum ((abs (repmat (permute(a,[1 3 2]), [1 rb 1]) - ...
74%               repmat (permute(b,[3 1 2]), [ra 1 1]))).^2,3);
75
76D = 1 - exp (-distm(a,b)/r^2);
77D(find(D < eps)) = 0;
78
79
80% Set object labels and feature labels
81if xor(isda, isdb),
82  prwarning(1,'One matrix is a dataset and the other not. ')
83end
84if isda,
85  if isdb,
86    D = setdata(A,D,getlab(B));
87  else
88    D = setdata(A,D);
89  end
90  D.name = 'Distance matrix';
91  if ~isempty(A.name)
92    D.name = [D.name ' for ' A.name];
93  end
94end
95return
Note: See TracBrowser for help on using the repository browser.