[10] | 1 | %EUDISTM Euclidean Distance Matrix
|
---|
| 2 | %
|
---|
| 3 | % D = EUDISTM(A,B)
|
---|
| 4 | % OR
|
---|
| 5 | % D = EUDISTM(A)
|
---|
| 6 | %
|
---|
| 7 | % INPUT
|
---|
| 8 | % A NxK Matrix or dataset
|
---|
| 9 | % B MxK Matrix or dataset (optional; default: B = A)
|
---|
| 10 | %
|
---|
| 11 | % OUTPUT
|
---|
| 12 | % D NxM Euclidean distance dataset or matrix
|
---|
| 13 | %
|
---|
| 14 | % DESCRIPTION
|
---|
| 15 | % Computation of the Euclidean distance matrix D between two sets of vectors
|
---|
| 16 | % A and B. If A and B are datasets, then D is a dataset as well with the labels
|
---|
| 17 | % defined by the labels of A and the feature labels defined by the labels of B.
|
---|
| 18 | % If A is not a dataset, but a matrix of doubles then D is also a matrix of
|
---|
| 19 | % doubles.
|
---|
| 20 | %
|
---|
| 21 | % NOTE
|
---|
| 22 | % EUDISTM(A,B) is equivalent to SQRT(DISTM(A,B)).
|
---|
| 23 | %
|
---|
| 24 | % DEFAULT
|
---|
| 25 | % B = A
|
---|
| 26 | %
|
---|
| 27 | % SEE ALSO
|
---|
| 28 | % DATASETS, DISTM, PROXM
|
---|
| 29 |
|
---|
| 30 | % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com
|
---|
| 31 | % Faculty EWI, Delft University of Technology and
|
---|
| 32 | % School of Computer Science, University of Manchester
|
---|
| 33 |
|
---|
| 34 |
|
---|
| 35 | function D = eudistm(A,B)
|
---|
| 36 | bisa = nargin < 2;
|
---|
| 37 | if bisa,
|
---|
| 38 | B = A;
|
---|
| 39 | end
|
---|
| 40 |
|
---|
| 41 | isda = isdataset(A);
|
---|
| 42 | isdb = isdataset(B);
|
---|
| 43 | a = +A;
|
---|
| 44 | b = +B;
|
---|
| 45 |
|
---|
| 46 | [ra,ca] = size(a);
|
---|
| 47 | [rb,cb] = size(b);
|
---|
| 48 | if ca ~= cb,
|
---|
| 49 | error ('Matrices should have equal numbers of columns');
|
---|
| 50 | end
|
---|
| 51 |
|
---|
| 52 |
|
---|
| 53 | % The order of operations below is good for the accuracy.
|
---|
| 54 | D = ones(ra,1)*sum(b'.*b',1);
|
---|
| 55 | D = D + sum(a'.*a',1)'*ones(1,rb);
|
---|
| 56 | D = D - 2 .*(+a)*(+b)';
|
---|
| 57 |
|
---|
| 58 | % Check for a numerical inaccuracy
|
---|
| 59 | D(find(D<eps)) = 0;
|
---|
| 60 |
|
---|
| 61 | D = sqrt(D);
|
---|
| 62 |
|
---|
| 63 | % Take care of symmetric distance matrix
|
---|
| 64 | if bisa & ra == rb,
|
---|
| 65 | D = 0.5*(D + D');
|
---|
| 66 | D([1:ra+1:ra^2]) = 0;
|
---|
| 67 | end
|
---|
| 68 |
|
---|
| 69 | % Set object labels and feature labels
|
---|
| 70 | if xor(isda, isdb),
|
---|
| 71 | prwarning(1,'One matrix is a dataset and the other not. ')
|
---|
| 72 | end
|
---|
| 73 | if isda,
|
---|
| 74 | if isdb,
|
---|
| 75 | D = setdata(A,D,getlab(B));
|
---|
| 76 | else
|
---|
| 77 | D = setdata(A,D);
|
---|
| 78 | end
|
---|
| 79 | D.name = 'Distance matrix';
|
---|
| 80 | if ~isempty(A.name)
|
---|
| 81 | D.name = [D.name ' for ' A.name];
|
---|
| 82 | end
|
---|
| 83 | end
|
---|
| 84 | return
|
---|