%DRSSCC Dissimilarity-based Random Subspace Combining Classifier % % W = DRSSCC(D,V,N,M,CRULE) % % INPUT % D NxK Dissimilarity dataset % V Base untrained classifier % N Desired number of representation objects per class % M Number of base classifiers to be generated % CRULE Combining rule % % OUTPUT % W Trained classifier % % DESCRIPTION % % DEFAULT % V = NMSC % N = 2 % M = 11 % CRULE = VOTEC % % Copyright: R.P.W. Duin, duin@ieee.org and % Elzbieta Pekalska, ela.pekalska@googlemail.com % Faculty EWI, Delft University of Technology and % School of Computer Science, University of Manchester function W = drsscc(D,v,N,M,crule) if nargin < 5, crule = votec; end if nargin < 4, M = 11; end if nargin < 3, N = 2; end if nargin < 2, v = nmsc; end if nargin < 1 | isempty(D) W = prmapping('DRSSCC',{v,N,M,crule}); return end nlab = getnlab(D); [m,k] = size(D); [flab,flist] = renumlab(getfeat(D)); c = size(flist,1); if length(N) == 1, N = N*ones(c,1); elseif length(N) ~= c, error('N should be either a scalar or a vector with the length C.'); else ; end W = []; for j = 1:M R = genreps(flab,N); W = [W D*(cmapm(k,R)*v)]; end W = traincc(D,W,crule); function R = genreps(nlab,N) % Generate n objects per class c = max(nlab); R = []; for j = 1:c J = find(nlab==j); L = randperm(length(J))'; R = [R; J(L(1:N(j)))]; end