1 | % DPROCRUSTDM Distance Matrix between Datasets based on Extended Procrustes Problem |
---|
2 | % |
---|
3 | % [D,T] = DPROCRUSTDM(X,Y,SC,EXT) |
---|
4 | % |
---|
5 | % INPUT |
---|
6 | % X N x Mx or N x Mx x Kx data |
---|
7 | % Y N x My or N x My x Ky data; My <= Mx |
---|
8 | % SC Parameter (1/0) indicating whether to scale the distance to [0,1] |
---|
9 | % by normalizing X and Y by their Frobenius norms (optional; default: 1) |
---|
10 | % EXT Parameter (1/0) indicating extended (1) or orthogonal (0) |
---|
11 | % Procrustes problem (optional; default: 1) |
---|
12 | % |
---|
13 | % OUTPUT |
---|
14 | % D Kx x Ky Distance matrix |
---|
15 | % T Kx x Ky Transformation structure |
---|
16 | % |
---|
17 | % DEFAULT |
---|
18 | % SC = 1 |
---|
19 | % EXT = 1 |
---|
20 | % |
---|
21 | % DESCRIPTION |
---|
22 | % Given two 2D matrices X and Y, extended Procrustes analysis, EXT = 1, finds |
---|
23 | % a linear transformation based on shift, orthogonal transformation and scaling |
---|
24 | % of the points in Y to fit the points in X. This is done by minimizing the sum |
---|
25 | % of squared differences, which is also the Frobenius norm between X and the |
---|
26 | % transformed Yt. Yt = alpha*Y*Q+1*beta^T, where alpha is the scaling scalar, |
---|
27 | % Q is the orthogonal transformation, beta is the shift vector and 1 is the |
---|
28 | % vector of all ones. If SC = 0, then the resulting difference is returned as |
---|
29 | % the dissimilarity D. So, the parameters are found in the least square sense |
---|
30 | % such that min ||X - alpha*Y*Q - 1*beta^T||^2 holds. |
---|
31 | % Then, D = norm(X-Yt,'Frobenius'). |
---|
32 | % If SC = 1, then the resulting distance D is scaled to [0,1] by normalizing it |
---|
33 | % by NORM(Xc,'Frobenius'), where Xc is X shifted to the origin. |
---|
34 | % |
---|
35 | % Orthogonal Procrustes analysis, EXT = 0, neglects alpha and beta and focuses |
---|
36 | % on the orthogonal transformation only. So, the above holds for Yt = Y*Q. |
---|
37 | % |
---|
38 | % X and Y should have the same number of points, as Procrustes analysis matches |
---|
39 | % X(i,:) to Y(i,:). If dim(Y) < dim(X), then columns of zeros are added to Y. |
---|
40 | % If X and Y are 3D matrices, then we consider sets of 2D matrices to be |
---|
41 | % compared, which results in a Kx x Ky distance matrix D. |
---|
42 | % |
---|
43 | % IMPORTANT |
---|
44 | % Note that D = DPROCRUST(X,X,0,1) is assymetric and D = DPROCRUST(X,X,S,EXT) |
---|
45 | % is symmetric, otherwise. |
---|
46 | % |
---|
47 | % T is a structure of the size Kx x Ky with the fields of alpha, beta and Q |
---|
48 | % if EXT = 1 and with the field of Q, if EXT = 0. For instance, T(i,j).Q is the |
---|
49 | % orthogonal trnasformation of Y(:,:,j) to fit Y(:,:,i). |
---|
50 | % |
---|
51 | % This routine can be used to match two results of MDS, or KPCA/PSEM for |
---|
52 | % an Euclidean embedding, or two shapes (described by contour points) of |
---|
53 | % known point correspondences. |
---|
54 | % |
---|
55 | % SEE ALSO |
---|
56 | % MDS, PCAM, PSEM, KPCA, MAPPINGS, DATASETS |
---|
57 | % |
---|
58 | % REFERENCE |
---|
59 | % 1. J.C. Gower, Generalized Procrustes analysis. Psychometrika, 40, 33-51, 1975. |
---|
60 | % 2. I. Borg, and P. Groenen, Modern Multidimensional Scaling. Springer, New York, 1997. |
---|
61 | % 3. http://e-collection.ethbib.ethz.ch/ecol-pool/bericht/bericht_363.pdf |
---|
62 | |
---|
63 | % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com |
---|
64 | % Faculty EWI, Delft University of Technology and |
---|
65 | % School of Computer Science, University of Manchester |
---|
66 | |
---|
67 | |
---|
68 | |
---|
69 | function [D,T] = dprocrustdm(X,Y,normalize,extPA) |
---|
70 | |
---|
71 | % Let X and Y be first centered at the origin. |
---|
72 | % [U,S,V]=preig(X'*Y); |
---|
73 | % |
---|
74 | % For non-normalized data, the transformation is given as |
---|
75 | % Q = V*U'; |
---|
76 | % alpha = trace(X'*Y*Q) / trace(Y'*Y) = sum(diag(S)) / norm(Y,'Frobenius')^2 |
---|
77 | % beta = (mean(X) - alpha*mean(Y)*Q); |
---|
78 | |
---|
79 | if nargin < 3, |
---|
80 | normalize = 1; |
---|
81 | end |
---|
82 | if nargin < 4, |
---|
83 | extPA = 1; |
---|
84 | end |
---|
85 | |
---|
86 | if normalize~=0 & normalize ~=1, |
---|
87 | error('SC should be either 0 or 1.'); |
---|
88 | end |
---|
89 | |
---|
90 | if extPA~=0 & extPA~=1, |
---|
91 | error('EXT should be either 0 or 1.'); |
---|
92 | end |
---|
93 | |
---|
94 | if isdataset(X), X = +X; end |
---|
95 | if isdataset(Y), Y = +Y; end |
---|
96 | |
---|
97 | [nx,mx,kx] = size(X); |
---|
98 | [ny,my,ky] = size(Y); |
---|
99 | |
---|
100 | if ny ~= nx, |
---|
101 | error('X and Y should have the same number of points.'); |
---|
102 | end |
---|
103 | if my > mx, |
---|
104 | error('Y cannot have more columns (dimensions) than X.'); |
---|
105 | end |
---|
106 | % Add columns of zero if dim(Y) < dim(X) |
---|
107 | if my < mx, |
---|
108 | if ky == 1, |
---|
109 | Y = [Y zeros(ny,mx-my)]; |
---|
110 | else |
---|
111 | Y(:,my+1:mx,:) = zeros(ny,mx-my,ky); |
---|
112 | end |
---|
113 | end |
---|
114 | |
---|
115 | XX = X; |
---|
116 | YY = Y; |
---|
117 | |
---|
118 | % Center the data at the origin |
---|
119 | Xme = mean(X,1); |
---|
120 | Yme = mean(Y,1); |
---|
121 | X = X - repmat(Xme,nx,1); |
---|
122 | Y = Y - repmat(Yme,ny,1); |
---|
123 | |
---|
124 | if normalize, |
---|
125 | % Compute the square Frobenius norm and scale the data |
---|
126 | % For data A, norm(A,'Frob') = sqrt(trace(A'*A)) = sqrt(sum(sum(A.^2)) |
---|
127 | Xfn = sqrt(sum(sum(X.^2,1),2)); |
---|
128 | Yfn = sqrt(sum(sum(Y.^2,1),2)); |
---|
129 | X = X./repmat(Xfn,nx,mx); |
---|
130 | Y = Y./repmat(Yfn,ny,my); |
---|
131 | Xfn = squeeze(Xfn); |
---|
132 | Yfn = squeeze(Yfn); |
---|
133 | else |
---|
134 | Yfn2 = squeeze(sum(sum(Y.^2,1),2)); |
---|
135 | end |
---|
136 | |
---|
137 | |
---|
138 | % Find the optimal transformation parameters of Yt = alpha*YY*Q+1*beta^T, |
---|
139 | % rotation matrix Q, scaling alpha and shift vector beta |
---|
140 | if normalize, |
---|
141 | for i=1:kx |
---|
142 | for j=1:ky |
---|
143 | G = X(:,:,i)'*Y(:,:,j); |
---|
144 | [U,S,V] = svd(G); |
---|
145 | Q = V*U'; |
---|
146 | scY(i,j) = sum(diag(S)); |
---|
147 | if nargout > 1, |
---|
148 | T(i,j).Q = Q; |
---|
149 | if extPA, |
---|
150 | T(i,j).alpha = scY(i,j) * (Xfn(i) /Yfn(j)); |
---|
151 | T(i,j).beta = squeeze(Xme(:,:,i)) - T(i,j).alpha*squeeze(Yme(:,:,j)) * T(i,j).Q; |
---|
152 | end |
---|
153 | end |
---|
154 | end |
---|
155 | end |
---|
156 | % Distance between X and Yt = alpha*Y*Q+1*beta^T |
---|
157 | D = real(sqrt(1 - scY.^2)); |
---|
158 | else |
---|
159 | for i=1:kx |
---|
160 | for j=1:ky |
---|
161 | G = X(:,:,i)'*Y(:,:,j); |
---|
162 | [U,S,V] = svd(G); |
---|
163 | Q = V*U'; |
---|
164 | scY(i,j) = sum(diag(S)); |
---|
165 | if nargout > 1, |
---|
166 | T(i,j).Q = Q; |
---|
167 | if extPA, |
---|
168 | T(i,j).alpha = scY(i,j) ./ Yfn2(j); |
---|
169 | T(i,j).beta = squeeze(Xme(:,:,i)) - T(i,j).alpha*squeeze(Yme(:,:,j)) * T(i,j).Q; |
---|
170 | D(i,j) = norm(XX(:,:,i) -T(i,j).alpha*YY(:,:,j)*T(i,j).Q+ones(ny,1)*T(i,j).beta,'fro'); |
---|
171 | else |
---|
172 | D(i,j) = norm(XX(:,:,i) -YY(:,:,j)*T(i,j).Q,'fro'); |
---|
173 | end |
---|
174 | else |
---|
175 | if extPA, |
---|
176 | alpha = scY(i,j) ./ Yfn2(j); |
---|
177 | beta = squeeze(Xme(:,:,i)) - alpha*squeeze(Yme(:,:,j)) * Q; |
---|
178 | D(i,j) = norm(XX(:,:,i) - alpha*YY(:,:,j)*Q + ones(ny,1)*beta,'fro'); |
---|
179 | else |
---|
180 | D(i,j) = norm(XX(:,:,i) - YY(:,:,j)*Q,'fro'); |
---|
181 | end |
---|
182 | end |
---|
183 | end |
---|
184 | end |
---|
185 | end |
---|
186 | |
---|
187 | % Take care that distances are real and nonnegative |
---|
188 | D = real(D); |
---|
189 | D(find (D < 0)) = 0; |
---|
190 | if kx == ky & kx > 1 & isymm(D,1e-12), |
---|
191 | D(1:kx+1:end) = 0; |
---|
192 | D = 0.5*(D+D'); |
---|
193 | end |
---|