[10] | 1 | % DPROCRUSTDM Distance Matrix between Datasets based on Extended Procrustes Problem |
---|
| 2 | % |
---|
| 3 | % [D,T] = DPROCRUSTDM(X,Y,SC,EXT) |
---|
| 4 | % |
---|
| 5 | % INPUT |
---|
| 6 | % X N x Mx or N x Mx x Kx data |
---|
| 7 | % Y N x My or N x My x Ky data; My <= Mx |
---|
| 8 | % SC Parameter (1/0) indicating whether to scale the distance to [0,1] |
---|
| 9 | % by normalizing X and Y by their Frobenius norms (optional; default: 1) |
---|
| 10 | % EXT Parameter (1/0) indicating extended (1) or orthogonal (0) |
---|
| 11 | % Procrustes problem (optional; default: 1) |
---|
| 12 | % |
---|
| 13 | % OUTPUT |
---|
| 14 | % D Kx x Ky Distance matrix |
---|
| 15 | % T Kx x Ky Transformation structure |
---|
| 16 | % |
---|
| 17 | % DEFAULT |
---|
| 18 | % SC = 1 |
---|
| 19 | % EXT = 1 |
---|
| 20 | % |
---|
| 21 | % DESCRIPTION |
---|
| 22 | % Given two 2D matrices X and Y, extended Procrustes analysis, EXT = 1, finds |
---|
| 23 | % a linear transformation based on shift, orthogonal transformation and scaling |
---|
| 24 | % of the points in Y to fit the points in X. This is done by minimizing the sum |
---|
| 25 | % of squared differences, which is also the Frobenius norm between X and the |
---|
| 26 | % transformed Yt. Yt = alpha*Y*Q+1*beta^T, where alpha is the scaling scalar, |
---|
| 27 | % Q is the orthogonal transformation, beta is the shift vector and 1 is the |
---|
| 28 | % vector of all ones. If SC = 0, then the resulting difference is returned as |
---|
| 29 | % the dissimilarity D. So, the parameters are found in the least square sense |
---|
| 30 | % such that min ||X - alpha*Y*Q - 1*beta^T||^2 holds. |
---|
| 31 | % Then, D = norm(X-Yt,'Frobenius'). |
---|
| 32 | % If SC = 1, then the resulting distance D is scaled to [0,1] by normalizing it |
---|
| 33 | % by NORM(Xc,'Frobenius'), where Xc is X shifted to the origin. |
---|
| 34 | % |
---|
| 35 | % Orthogonal Procrustes analysis, EXT = 0, neglects alpha and beta and focuses |
---|
| 36 | % on the orthogonal transformation only. So, the above holds for Yt = Y*Q. |
---|
| 37 | % |
---|
| 38 | % X and Y should have the same number of points, as Procrustes analysis matches |
---|
| 39 | % X(i,:) to Y(i,:). If dim(Y) < dim(X), then columns of zeros are added to Y. |
---|
| 40 | % If X and Y are 3D matrices, then we consider sets of 2D matrices to be |
---|
| 41 | % compared, which results in a Kx x Ky distance matrix D. |
---|
| 42 | % |
---|
| 43 | % IMPORTANT |
---|
| 44 | % Note that D = DPROCRUST(X,X,0,1) is assymetric and D = DPROCRUST(X,X,S,EXT) |
---|
| 45 | % is symmetric, otherwise. |
---|
| 46 | % |
---|
| 47 | % T is a structure of the size Kx x Ky with the fields of alpha, beta and Q |
---|
| 48 | % if EXT = 1 and with the field of Q, if EXT = 0. For instance, T(i,j).Q is the |
---|
| 49 | % orthogonal trnasformation of Y(:,:,j) to fit Y(:,:,i). |
---|
| 50 | % |
---|
| 51 | % This routine can be used to match two results of MDS, or KPCA/PSEM for |
---|
| 52 | % an Euclidean embedding, or two shapes (described by contour points) of |
---|
| 53 | % known point correspondences. |
---|
| 54 | % |
---|
| 55 | % SEE ALSO |
---|
[79] | 56 | % MDS, PCAM, PSEM, KPCA, MAPPINGS, DATASETS |
---|
[10] | 57 | % |
---|
| 58 | % REFERENCE |
---|
| 59 | % 1. J.C. Gower, Generalized Procrustes analysis. Psychometrika, 40, 33-51, 1975. |
---|
| 60 | % 2. I. Borg, and P. Groenen, Modern Multidimensional Scaling. Springer, New York, 1997. |
---|
| 61 | % 3. http://e-collection.ethbib.ethz.ch/ecol-pool/bericht/bericht_363.pdf |
---|
| 62 | |
---|
| 63 | % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com |
---|
| 64 | % Faculty EWI, Delft University of Technology and |
---|
| 65 | % School of Computer Science, University of Manchester |
---|
| 66 | |
---|
| 67 | |
---|
| 68 | |
---|
| 69 | function [D,T] = dprocrustdm(X,Y,normalize,extPA) |
---|
| 70 | |
---|
| 71 | % Let X and Y be first centered at the origin. |
---|
| 72 | % [U,S,V]=preig(X'*Y); |
---|
| 73 | % |
---|
| 74 | % For non-normalized data, the transformation is given as |
---|
| 75 | % Q = V*U'; |
---|
| 76 | % alpha = trace(X'*Y*Q) / trace(Y'*Y) = sum(diag(S)) / norm(Y,'Frobenius')^2 |
---|
| 77 | % beta = (mean(X) - alpha*mean(Y)*Q); |
---|
| 78 | |
---|
| 79 | if nargin < 3, |
---|
| 80 | normalize = 1; |
---|
| 81 | end |
---|
| 82 | if nargin < 4, |
---|
| 83 | extPA = 1; |
---|
| 84 | end |
---|
| 85 | |
---|
| 86 | if normalize~=0 & normalize ~=1, |
---|
| 87 | error('SC should be either 0 or 1.'); |
---|
| 88 | end |
---|
| 89 | |
---|
| 90 | if extPA~=0 & extPA~=1, |
---|
| 91 | error('EXT should be either 0 or 1.'); |
---|
| 92 | end |
---|
| 93 | |
---|
| 94 | if isdataset(X), X = +X; end |
---|
| 95 | if isdataset(Y), Y = +Y; end |
---|
| 96 | |
---|
| 97 | [nx,mx,kx] = size(X); |
---|
| 98 | [ny,my,ky] = size(Y); |
---|
| 99 | |
---|
| 100 | if ny ~= nx, |
---|
| 101 | error('X and Y should have the same number of points.'); |
---|
| 102 | end |
---|
| 103 | if my > mx, |
---|
| 104 | error('Y cannot have more columns (dimensions) than X.'); |
---|
| 105 | end |
---|
| 106 | % Add columns of zero if dim(Y) < dim(X) |
---|
| 107 | if my < mx, |
---|
| 108 | if ky == 1, |
---|
| 109 | Y = [Y zeros(ny,mx-my)]; |
---|
| 110 | else |
---|
| 111 | Y(:,my+1:mx,:) = zeros(ny,mx-my,ky); |
---|
| 112 | end |
---|
| 113 | end |
---|
| 114 | |
---|
| 115 | XX = X; |
---|
| 116 | YY = Y; |
---|
| 117 | |
---|
| 118 | % Center the data at the origin |
---|
| 119 | Xme = mean(X,1); |
---|
| 120 | Yme = mean(Y,1); |
---|
| 121 | X = X - repmat(Xme,nx,1); |
---|
| 122 | Y = Y - repmat(Yme,ny,1); |
---|
| 123 | |
---|
| 124 | if normalize, |
---|
| 125 | % Compute the square Frobenius norm and scale the data |
---|
| 126 | % For data A, norm(A,'Frob') = sqrt(trace(A'*A)) = sqrt(sum(sum(A.^2)) |
---|
| 127 | Xfn = sqrt(sum(sum(X.^2,1),2)); |
---|
| 128 | Yfn = sqrt(sum(sum(Y.^2,1),2)); |
---|
| 129 | X = X./repmat(Xfn,nx,mx); |
---|
| 130 | Y = Y./repmat(Yfn,ny,my); |
---|
| 131 | Xfn = squeeze(Xfn); |
---|
| 132 | Yfn = squeeze(Yfn); |
---|
| 133 | else |
---|
| 134 | Yfn2 = squeeze(sum(sum(Y.^2,1),2)); |
---|
| 135 | end |
---|
| 136 | |
---|
| 137 | |
---|
| 138 | % Find the optimal transformation parameters of Yt = alpha*YY*Q+1*beta^T, |
---|
| 139 | % rotation matrix Q, scaling alpha and shift vector beta |
---|
| 140 | if normalize, |
---|
| 141 | for i=1:kx |
---|
| 142 | for j=1:ky |
---|
| 143 | G = X(:,:,i)'*Y(:,:,j); |
---|
| 144 | [U,S,V] = svd(G); |
---|
| 145 | Q = V*U'; |
---|
| 146 | scY(i,j) = sum(diag(S)); |
---|
| 147 | if nargout > 1, |
---|
| 148 | T(i,j).Q = Q; |
---|
| 149 | if extPA, |
---|
| 150 | T(i,j).alpha = scY(i,j) * (Xfn(i) /Yfn(j)); |
---|
| 151 | T(i,j).beta = squeeze(Xme(:,:,i)) - T(i,j).alpha*squeeze(Yme(:,:,j)) * T(i,j).Q; |
---|
| 152 | end |
---|
| 153 | end |
---|
| 154 | end |
---|
| 155 | end |
---|
| 156 | % Distance between X and Yt = alpha*Y*Q+1*beta^T |
---|
| 157 | D = real(sqrt(1 - scY.^2)); |
---|
| 158 | else |
---|
| 159 | for i=1:kx |
---|
| 160 | for j=1:ky |
---|
| 161 | G = X(:,:,i)'*Y(:,:,j); |
---|
| 162 | [U,S,V] = svd(G); |
---|
| 163 | Q = V*U'; |
---|
| 164 | scY(i,j) = sum(diag(S)); |
---|
| 165 | if nargout > 1, |
---|
| 166 | T(i,j).Q = Q; |
---|
| 167 | if extPA, |
---|
| 168 | T(i,j).alpha = scY(i,j) ./ Yfn2(j); |
---|
| 169 | T(i,j).beta = squeeze(Xme(:,:,i)) - T(i,j).alpha*squeeze(Yme(:,:,j)) * T(i,j).Q; |
---|
| 170 | D(i,j) = norm(XX(:,:,i) -T(i,j).alpha*YY(:,:,j)*T(i,j).Q+ones(ny,1)*T(i,j).beta,'fro'); |
---|
| 171 | else |
---|
| 172 | D(i,j) = norm(XX(:,:,i) -YY(:,:,j)*T(i,j).Q,'fro'); |
---|
| 173 | end |
---|
| 174 | else |
---|
| 175 | if extPA, |
---|
| 176 | alpha = scY(i,j) ./ Yfn2(j); |
---|
| 177 | beta = squeeze(Xme(:,:,i)) - alpha*squeeze(Yme(:,:,j)) * Q; |
---|
| 178 | D(i,j) = norm(XX(:,:,i) - alpha*YY(:,:,j)*Q + ones(ny,1)*beta,'fro'); |
---|
| 179 | else |
---|
| 180 | D(i,j) = norm(XX(:,:,i) - YY(:,:,j)*Q,'fro'); |
---|
| 181 | end |
---|
| 182 | end |
---|
| 183 | end |
---|
| 184 | end |
---|
| 185 | end |
---|
| 186 | |
---|
| 187 | % Take care that distances are real and nonnegative |
---|
| 188 | D = real(D); |
---|
| 189 | D(find (D < 0)) = 0; |
---|
| 190 | if kx == ky & kx > 1 & isymm(D,1e-12), |
---|
| 191 | D(1:kx+1:end) = 0; |
---|
| 192 | D = 0.5*(D+D'); |
---|
| 193 | end |
---|