1 | %DMSTSPM Find the Shortest Paths along K Minimum Spanning Trees
|
---|
2 | %
|
---|
3 | % W = DMSTSPM (D,K,P)
|
---|
4 | %
|
---|
5 | % INPUT
|
---|
6 | % D NxN Symmetric dissimilarity matrix or dataset
|
---|
7 | % K Number of minimum spanning trees; (optional; default: 1)
|
---|
8 | % P Object number, P = 1..N;
|
---|
9 | % (optional; default: P with the largest distances to all other objects)
|
---|
10 | %
|
---|
11 | % OUTPUT
|
---|
12 | % W Mapping that determines the shortest paths
|
---|
13 | %
|
---|
14 | % DESCRIPTION
|
---|
15 | % Determines the shortest paths along a neighborhood graph defined by K minimum
|
---|
16 | % spanning trees. MSTs are found by the Prim's algorithm, starting from the
|
---|
17 | % point P. The result, however, does not depend on P. New vertices are projected
|
---|
18 | % on an edge of the existing neighborhood graph such that the distances
|
---|
19 | % between a new object and the vertices of this edge are the smallest. Then,
|
---|
20 | % the distances along the shortest paths are computed.
|
---|
21 | %
|
---|
22 | % DEFAULT
|
---|
23 | % K = 1
|
---|
24 | % P = max(dist)
|
---|
25 | %
|
---|
26 | % SEE ALSO
|
---|
27 | % KMST, DSPATH, DSPATHS
|
---|
28 |
|
---|
29 | % Elzbieta Pekalska, ela.pekalska@googlemail.com
|
---|
30 | % Faculty of EWI, Delft University of Technology, The Netherlands and
|
---|
31 | % School of Computer Science, University of Manchester
|
---|
32 |
|
---|
33 |
|
---|
34 |
|
---|
35 |
|
---|
36 | function W = dmstspm(D,K,p)
|
---|
37 |
|
---|
38 | if nargin < 3 | isempty(p),
|
---|
39 | [ss,p]= max(sum(+D));
|
---|
40 | end
|
---|
41 | if nargin < 2 | isempty(K),
|
---|
42 | K = 1;
|
---|
43 | end
|
---|
44 | if nargin < 1 | isempty(D)
|
---|
45 | W = mapping(mfilename,{K,p});
|
---|
46 | W = setname(W,'dmstspm');
|
---|
47 | return
|
---|
48 | end
|
---|
49 |
|
---|
50 |
|
---|
51 | if isdataset(D) | isa(D,'double'),
|
---|
52 |
|
---|
53 | if ismapping(K),
|
---|
54 | n_orig = getsize_in(K);
|
---|
55 | pars = getdata(K);
|
---|
56 |
|
---|
57 | L = pars{1}; % list of edges in the MSTs
|
---|
58 | dm = pars{2}; % weights of the edges
|
---|
59 | K = pars{3}; % number of MSTs
|
---|
60 |
|
---|
61 | W = D;
|
---|
62 | D = +D;
|
---|
63 | [m,n] = size(D);
|
---|
64 | if n ~= n_orig,
|
---|
65 | error('The number of columns in the test data does not match.')
|
---|
66 | end
|
---|
67 |
|
---|
68 | is_porig = (m > n & sum(diag(+D(1:n,:)))<=1e-16);
|
---|
69 | is_orig = (m == n & sum(diag(+D))<=1e-16);
|
---|
70 |
|
---|
71 | LL = [L; L(:,[2 1])];
|
---|
72 | ddm = [dm; dm];
|
---|
73 | DD = inf * ones(n_orig);
|
---|
74 | DD((LL(:,2)-1)*n_orig+LL(:,1)) = ddm;
|
---|
75 | DD(1:n_orig+1:end)=0;
|
---|
76 |
|
---|
77 | if is_orig | is_porig, % if (a part of) test data is the original distance matrix
|
---|
78 | Dp = dspaths(DD);
|
---|
79 | end
|
---|
80 |
|
---|
81 | if ~is_orig,
|
---|
82 | if is_porig,
|
---|
83 | pos = n;
|
---|
84 | Dp = [Dp; zeros(m-n,n)];
|
---|
85 | else
|
---|
86 | pos = 0;
|
---|
87 | Dp = zeros(m,n);
|
---|
88 | end
|
---|
89 |
|
---|
90 | dmn = zeros(m-pos,2);
|
---|
91 | dd = zeros(m-pos,1);
|
---|
92 | Ln = zeros(m-pos,2);
|
---|
93 | D = D(pos+1:m,:);
|
---|
94 |
|
---|
95 | [dmin,I] = min(D,[],2);
|
---|
96 | LL = L(:);
|
---|
97 | for i=1:length(I)
|
---|
98 | J = find(LL == I(i));
|
---|
99 | [dd(i),z] = min(ddm(J));
|
---|
100 | Ln(i,1:2) = [I(i) LL(J(z))];
|
---|
101 | end
|
---|
102 |
|
---|
103 | % Use the cosine law to determine the distances of the points
|
---|
104 | % projected onto the closest edge
|
---|
105 | X = (dmin.^2 + dd.^2 - D(Ln(I,2)*(m-pos)+I).^2) ./(2*dd);
|
---|
106 | dmn = [X dd-X];
|
---|
107 | Z = find(X < 0); % make corrections if distances are negative
|
---|
108 | if ~isempty(Z)
|
---|
109 | dmn(Z,:) = [-X(Z) dd(Z)-X(Z)];
|
---|
110 | end
|
---|
111 | Z = find(X > dd); % make corrections if distances are too large
|
---|
112 | if ~isempty(Z)
|
---|
113 | dmn(Z,:) = [X(Z) -dd(Z)+X(Z)];
|
---|
114 | end
|
---|
115 |
|
---|
116 | for i=1:length(I)
|
---|
117 | dnew = inf*ones(1,n);
|
---|
118 | dnew(Ln(i,:)) = dmn(i,:);
|
---|
119 | Q = dspaths([DD dnew'; dnew 0]); % Floyd's algorithm is used, since it is fast in Matlab
|
---|
120 | Dp(pos+i,:) = Q(n+1,1:n);
|
---|
121 | end
|
---|
122 | end
|
---|
123 |
|
---|
124 |
|
---|
125 | if isdataset(W),
|
---|
126 | W = setdata(W,Dp);
|
---|
127 | else
|
---|
128 | W = Dp;
|
---|
129 | end
|
---|
130 | return;
|
---|
131 |
|
---|
132 | else
|
---|
133 |
|
---|
134 | D = +D;
|
---|
135 | [n,m] = size(D);
|
---|
136 | if n ~= m | ~issym(D,1e-12),
|
---|
137 | error('D should be symmetric.')
|
---|
138 | end
|
---|
139 | D = 0.5*(D+D');
|
---|
140 |
|
---|
141 | [Lmst,d] = kdmst(D,K,p);
|
---|
142 | W = mapping(mfilename,'trained',{Lmst,d,K},[],n,n);
|
---|
143 | W = setname(W,'dmstspm');
|
---|
144 | end
|
---|
145 | end
|
---|
146 | return;
|
---|