source: distools/dlpc.m @ 126

Last change on this file since 126 was 79, checked in by bduin, 11 years ago
File size: 12.1 KB
Line 
1%DLPC LP-classifier on dissimilarity (proximity) data
2%
3%   [W1,W2,W3] = DLPC(D,BIAS,TYPE,PARAM)
4%
5% INPUT
6%   D     Dissimilarity (proximity) dataset
7%   BIAS  YES or NO (optional; default: 1 (YES))
8%   TYPE  Type of a classifier
9%         'SIMPLE'   - the most simple formulation; no sparse solution; PARAM = [];
10%         'STANDARD' - minimization of the training misclassification errors;
11%                      no sparse solution; PARAM = [];
12%         'C-SPARSE' - sparse solution; a formulation similar to the LP_1 SVM;
13%                       PARAM is a tradeoff parameter, similar as in the traditional
14%                       SVM; (optional; DEFAULT: 1).
15%         'MU-SPARSE' - sparse solution; a formulation similar to the LP_1 SVM,
16%                       based on the paper of Graepel, Herbrich, Smola etc
17%                       'Classification on proximity data with LP-machines'.
18%                       PARAM is a tradeoff parameter, usually PARAM = 0.05 or 0.1.
19%                       It is an upper bound on the misclassfied training objects.
20%                       So, for well separable problems, PARAM = 0.01 or PARAM = 0.02.
21%                       (optional; DEFAULT: the LOO 1-NN error * 1.3).
22%  PARAM Parameter connected to the TYPE, as above
23%
24% OUTPUT
25%   W1  LP-Classifier in the complete dissimilarity space
26%   W2  LP-Classifier in a reduced dissimilarity space
27%   W3  Object selection prmapping; the indices of support objects are in +W3.
28%
29% DEFAULTS
30%   BIAS  = 1
31%   TYPE  = 'STANDARD'
32%   PARAM = []
33%
34% DESCRIPTION
35% Classification problem on a N x M dissimilarity dataset D with LP-machines.
36% D should be described by both label and feature lists. If D is a square,
37% symmetric matrix, then the feature list should be the same as the label list.
38%
39% Assume a 2-class problem. Let DLPC select J support objects. Then:
40% W1 is an M x 2 classifier in the original dissimilarity space, W2 is an J x 2
41% classifier in the dissimilarity space defined by the J support objects
42% and W3 is an M x R feature selection such that W1 = W3 * W2.
43% Note that the indices of the support objects can be retrieved by +W3.
44%
45% A linear classifier is built on D:
46%
47%     f(D(x,*)) = diag(Y) * D(x,*) * W + W0,
48%
49% where Y are labels (+/- 1) and W are the weights. If BIAS is 1, then W0 is also
50% sought, otherwise it equals 0, hence the hyperplane is forced to go through the origin.
51%
52% For C-class problems, C classifiers are trained, one against all others.
53% In such a case, only W1 is returned and W3 in now NOT a feature selection,
54% but directly the indices of the support objects.
55
56
57%
58% Let [n,k] = size(D). Assume a two-class problem.
59% Any multi-class problem is converted one-against-all to two-class problems.
60% Y are the labels (converted +/-1)
61% D_Y = diag(Y_r) * D * diag(Y_c),
62% where Y_r are the labels for rows of D and
63% Y_c are the labels for columns.
64% alpha is the sought solution.
65%
66% Internal - the optimization schema (A,b,f) refer to the constraints in
67% the standard Matlab LINPROG procedure.
68%
69% 'simple':
70%   min    0^T * alpha(1:k) (= 0)
71%   s.t.   [D_Y  Y]  * [alpha(1:k) alpha_0)] >= 1
72%
73%   A = [D_Y  Y]  is  n x (k+1)
74%   b = 1(n,1)
75%   f = 0(k+1,1)
76%
77%
78% 'standard':
79%   min    p^T * beta(1:n),    p = 1/n_i for the class_i
80%   s.t.   [D_Y Y] * [alpha(1:k) alpha_0] + beta(1:n) >= 1,
81%          beta >= 0
82%
83%   A = [D_Y  Y  eye(n)]
84%   b = 1(n,1)
85%   f = [0(k+1,1) p]^T
86%
87%
88% 'c-sparse':
89%   min    sum(alpha(1:k)) + sum (alpha2(1:k)) + C*sum(ksi)
90%   s.t.   [D_Y Y] * [alpha(1:k)-alpha2(1:k)  alpha_0] + ksi(1:n) >= 1,
91%          ksi >= 0
92%          alpha, alpha2 >= 0
93%
94%   A = [D_Y  -D_Y Y  eye(n,n)]
95%   b = 1(n,1)
96%   f = [0(k+1,1)]^T
97%
98%
99% 'mu-sparse':
100%   min    sum(ksi)/n - mu*g
101%   s.t.   [D_Y -D_Y Y] * [alpha(1:k)-alpha2(1:k)  alpha_0] + ksi(1:n) >= g,
102%          sum(alpha) + sum(alpha2) = 1
103%          alpha, alpha2 >= 0
104%          ksi >= 0
105%
106%   A = [D_Y  -D_Y  Y  eye(n,n)]
107%   b = 1(n,1)
108%   f = [0(2k+1,1)]
109%
110
111
112% Elzbieta Pekalska, Robert P.W. Duin, e.pekalska@tudelft.nl
113% Faculty of Electrical Engineering, Mathematics and Computer Science,
114% Delft University of Technology, The Netherlands.
115
116
117
118function [W1,W2,W3] = dlpc (d,is_w0,type,par,usematlab,prec)
119if nargin < 6, prec = 1e-7; end
120if nargin < 5, usematlab = 0; end
121if nargin < 3 | isempty(type), type =  'standard'; end
122if nargin < 4
123    par = [];
124end
125if nargin < 2 | isempty(is_w0), is_w0 = 1; end
126if nargin < 1 | isempty(d)
127  W1 = prmapping(mfilename,{is_w0,type,par,usematlab});
128  W1 = setname(W1,'DLPC');
129  W2 = [];
130  W3 = [];
131  return
132end
133
134
135if ~isdataset(d),
136  error('The first parameter should be a dataset.')
137end
138if ~isnumeric(is_w0) | (is_w0 ~= 0 & is_w0 ~= 1),
139  error('The second parameter should be 0 or 1.');
140end
141
142if isempty(par),
143  switch upper(type)
144    case 'MU-SPARSE',
145      par = max(0.01,1.3*testkd(d,1,'loo')); % upperbound error: 1.3 * loo 1-nn error
146    case 'C-SPARSE',
147      par = 1;
148    case {'SIMPLE','STANDARD'},
149      par = [];
150    otherwise
151      error('Wrong type.')
152  end
153end
154
155lab      = getnlab(d);
156lablist  = getlablist(d);
157featlab  = getfeatlab(d);
158[m,k,C]  = getsize(d);
159
160[nl, fe, fl] = renumlab(lablist,featlab);
161if max(fe) > size(lablist,1)
162  error('Feature labels of the dataset do not match with class labels.')
163end
164
165
166
167z = (is_w0 > 0);  % is bias used or not?
168
169% This is the status of the optimization procedure.
170% For GLPK, this is the exit code; see GLPKMEX for details.
171% For Matlab LINPROG, if negative then no solution is found.
172
173status = 1;
174
175
176% If more than 2 classes, do one against all others.
177if C > 2,
178% W1 = mclassc(d,prmapping(mfilename,{is_w0,type,par,usematlab}));
179
180  W1 = [];
181  W2 = [];
182  W3 = [];
183  N = [];
184  for i=1:C
185    mlab = 2 - (lab == i);
186    mfe  = 2 - (fe == i);
187    dd   = setlabels(d,mlab);
188    dd   = setfeatlab(dd,mfe);
189    if ~isempty(d.prior)
190      dd = setprior(dd,[d.prior(i),1-d.prior(i)]');
191    end
192    [v1,v2,v3]= dlpc(dd,is_w0,type,par,usematlab);
193    j = +v3;
194    if isempty(v1),
195      W1 = [];
196      W2 = [];
197      W3 = [];
198      prwarning(1,'No solution found.');
199      return;
200    end
201    W1 = [W1,setlabels(v1(:,1),lablist(i,:))];
202    W2 = [W2;setlabels(v2(:,1),lablist(i,:))];
203    W3(j) = ones(length(j),1);
204    N = [N j];
205  end
206  [N1,N2,N3] = unique(N);
207  W3 = featsel(k,N1);
208  %disp(size(W3,2))
209  W2 = featsel(length(N1),N3)*W2;
210  return
211
212else
213
214  Y1 = 3 - 2 * lab;   % labels     +/-1
215  Y  = 3 - 2 * fe;    % featlabels +/-1
216
217  alpha(1:k+1,1) = 0;
218
219
220  switch type
221    case 'simple',
222      f = zeros(k+z,1);
223      b = -ones(m,1);
224      if is_w0,
225        A = -[(Y1*Y').* +d  Y1];
226      else
227        A = -[(Y1*Y').* +d];
228      end
229
230%     if (exist('glpkmex')>0) & (usematlab==0)
231%       smin     = 1;  % solve minimum
232%       ctype    = char(ones(m,1)*abs('U'));    % Sign of inequalities
233%       vartype  = char(ones(k+z,1)*abs('C'));  % Continous variables
234%       lpsolver = 2;                           % Interior Point Method
235%       lpsolver = 1;                           % Revised Simlex Method
236%       params.msglev = 0; % no outputs
237%       [al,fval,status] = glpkmex(smin,f,A,b,ctype,[],[],vartype,params,lpsolver);
238%     else
239%       [al,fval,status] = linprog(f,A,b);
240%     end
241
242      [al,fval,status] = linprog(f,A,b);
243      alpha(1:k+z) = al;
244
245
246
247    case 'standard',
248      L    = ones(k,1);
249      I    = find(Y==1);
250      if ~isempty(I)
251        L(I) = L(I)/length(I);
252      end
253      J    = find(Y==-1);
254      if ~isempty(J)
255        L(J) = L(J)/length(J);
256      end
257
258      f  = [zeros(k+z,1); L];
259      lb = [-Inf .*ones(k+z,1); zeros(k,1)];
260      ub = Inf .* ones(2*k+z,1);
261      b  = -ones(m,1);
262      if is_w0,
263        A  = -[(Y1*Y').* +d  Y1  eye(m,k)];
264      else
265        A  = -[(Y1*Y').* +d  eye(m,k)];
266      end
267
268%     if (exist('glpkmex')>0) & (usematlab==0)
269%       smin     = 1;  % solve minimum
270%       ctype    = char(ones(m,1)*abs('U'));     % Sign of inequalities
271%       vartype  = char(ones(2*k+z,1)*abs('C')); % Continous variables
272%%        lpsolver = 2;                          % Interior Point Method
273%       lpsolver = 1;                            % Revised Simlex Method
274%       params.msglev = 0; % no outputs
275%       [sss,hostname] = unix('hostname');
276%       hostname = hostname(1:end-1);
277%       if strcmp(hostname,'saturnus') | strcmp(hostname,'polaris') | strcmp(hostname,'neptunus')
278%         [al,fval,status] = glpkmex_redhat(smin,f,A,b,ctype,lb,ub,vartype,params,lpsolver);
279%       else
280%         [al,fval,status] = glpkmex(smin,f,A,b,ctype,lb,ub,vartype,params,lpsolver);
281%       end
282%     else
283%       [al,fval,ststus] = linprog(f,A,b,[],[],lb,ub);
284%     end
285
286    [al,fval,ststus] = linprog(f,A,b,[],[],lb,ub);
287      alpha(1:k+z) = al(1:k+z);
288
289
290
291    case 'c-sparse',
292      L  = ones(k,1);
293      ub = Inf .* ones(3*k+z,1);
294      lb = [zeros(2*k,1); -Inf.*ones(z,1); zeros(k,1)];
295      b  = -ones(m,1);
296
297      dd = (Y1*Y').* +d;
298      if is_w0,
299        f  = [ones(2*k,1); 0; par*L];
300        A  = -[dd  -dd  Y1 eye(m,k)];
301      else
302        f  = [ones(2*k,1); par*L];
303        A  = -[dd  -dd  eye(m,k)];
304      end
305      if (exist('glpkmex')>0) & (usematlab==0)
306        smin     = 1;  % solve minimum
307        ctype    = char([ones(m,1)*abs('U')]);       % Sign of inequalities
308        vartype  = char(ones(3*k+z,1)*abs('C'))  ;   % Continuous variables
309%         lpsolver = 1;                               % Revised Simlex Method
310        lpsolver = 2;                               % Interior Point Method
311        params.msglev = 0;    % no outputs
312        params.itlim  = 400;  % iteration limit
313        [sss,hostname] = unix('hostname');
314        hostname = hostname(1:end-1);
315        if strcmp(hostname,'saturnus') | strcmp(hostname,'polaris') | strcmp(hostname,'neptunus')
316          [al,fval,status] = glpkmex_redhat(smin,f,A,b,ctype,lb,ub,vartype,params,lpsolver);
317        else
318          [al,fval,status] = glpkmex(smin,f,A,b,ctype,lb,ub,vartype,params,lpsolver);
319        end
320      else
321        [al,fval,status] = linprog (f,A,b,[],[],lb,ub);
322      end
323      alpha(1:k) = al(1:k) - al(k+1:2*k);
324      if is_w0,
325        alpha(k+1) = al(2*k+1);
326      end
327
328
329
330    case 'mu-sparse',
331      L   = ones(k,1)/k;
332      f   = [zeros(2*k+z,1); L; -par];
333      ub  = Inf .* ones(3*k+1+z,1);
334      lb  = [zeros(2*k,1); -Inf.*ones(z,1); zeros(k+1,1)];
335      Aeq = [ones(2*k,1); zeros(k+1+z,1)]';
336      beq = 1;
337      b   = zeros(m,1);
338      dd  = (Y1*Y').* +d;
339
340      if is_w0,
341        A  = -[dd  -dd  Y1  eye(m,k) -ones(m,1)];
342      else
343        A  = -[dd -dd  eye(m,k) -ones(m,1)];
344      end
345
346      if (exist('glpkmex')>0) & (usematlab==0)
347        smin     = 1;  % solve minimum
348        ctype    = char([ones(m,1)*abs('U'); 'S']);  % Sign of inequalities
349        vartype  = char(ones(3*k+1+z,1)*abs('C'));   % Continous variables
350%        lpsolver = 1;                                % Revised Simlex Method
351        lpsolver = 2;                               % Interior Point Method
352        params.msglev = 0;    % no outputs, but doesn't seem to work
353        params.itlim  = 400;  % iteration limit
354        [sss,hostname] = unix('hostname');
355        hostname = hostname(1:end-1);
356        if strcmp(hostname,'saturnus') | strcmp(hostname,'polaris') | strcmp(hostname,'neptunus')
357          [al,fval,status] = glpkmex_redhat(smin,f,[A; Aeq],[b; beq],ctype,lb,ub,vartype,params,lpsolver);
358        else
359          [al,fval,status] = glpkmex(smin,f,[A; Aeq],[b; beq],ctype,lb,ub,vartype,params,lpsolver);
360        end
361      else
362        [al,fval,status] = linprog(f,A,b,Aeq,beq,lb,ub);
363      end
364
365      alpha(1:k) = al(1:k) - al(k+1:2*k);
366      if is_w0,
367        alpha(k+1) = al(2*k+1);
368      end
369
370    otherwise
371      error ('Wrong type.');
372    end
373  end
374
375  if (status <= 0) | (status > 181 | status == 150),
376    prwarning(1,'Fisher classifier is trained.');
377    W1 = fisherc(d);
378    W2 = W1;
379    W3 = featsel(k,[1:k]);
380    return;
381  end
382
383
384  % Choose support objects
385  ss = sum(abs(alpha(1:k)));
386  J  = find(abs(alpha(1:k)) > ss*prec);
387  if ~isempty(J),
388    W3 = featsel(k,J);
389    w = [Y; 1] .* alpha(1:k+1);
390    W2 = affine(w(J),w(k+1),d(:,J),lablist,k,2);
391    W2 = cnormc(W2,d(:,J));
392    W1 = W3*W2;
393    W1 = setname(W1,'DLPC');
394    W2 = setname(W2,'DLPC');
395  else
396    prwarning(1,'No support objects found. Fisher classifier is trained.');
397    W1 = fisherc(d);
398    W2 = W1;
399    W3 = featsel(k,[1:k]);
400    return;
401  end
402  % disp(size(W3,2))
403return;
Note: See TracBrowser for help on using the repository browser.