[10] | 1 | %DLPC LP-classifier on dissimilarity (proximity) data |
---|
| 2 | % |
---|
| 3 | % [W1,W2,W3] = DLPC(D,BIAS,TYPE,PARAM) |
---|
| 4 | % |
---|
| 5 | % INPUT |
---|
| 6 | % D Dissimilarity (proximity) dataset |
---|
| 7 | % BIAS YES or NO (optional; default: 1 (YES)) |
---|
| 8 | % TYPE Type of a classifier |
---|
| 9 | % 'SIMPLE' - the most simple formulation; no sparse solution; PARAM = []; |
---|
| 10 | % 'STANDARD' - minimization of the training misclassification errors; |
---|
| 11 | % no sparse solution; PARAM = []; |
---|
| 12 | % 'C-SPARSE' - sparse solution; a formulation similar to the LP_1 SVM; |
---|
| 13 | % PARAM is a tradeoff parameter, similar as in the traditional |
---|
| 14 | % SVM; (optional; DEFAULT: 1). |
---|
| 15 | % 'MU-SPARSE' - sparse solution; a formulation similar to the LP_1 SVM, |
---|
| 16 | % based on the paper of Graepel, Herbrich, Smola etc |
---|
| 17 | % 'Classification on proximity data with LP-machines'. |
---|
| 18 | % PARAM is a tradeoff parameter, usually PARAM = 0.05 or 0.1. |
---|
| 19 | % It is an upper bound on the misclassfied training objects. |
---|
| 20 | % So, for well separable problems, PARAM = 0.01 or PARAM = 0.02. |
---|
| 21 | % (optional; DEFAULT: the LOO 1-NN error * 1.3). |
---|
| 22 | % PARAM Parameter connected to the TYPE, as above |
---|
| 23 | % |
---|
| 24 | % OUTPUT |
---|
| 25 | % W1 LP-Classifier in the complete dissimilarity space |
---|
| 26 | % W2 LP-Classifier in a reduced dissimilarity space |
---|
[79] | 27 | % W3 Object selection prmapping; the indices of support objects are in +W3. |
---|
[10] | 28 | % |
---|
| 29 | % DEFAULTS |
---|
| 30 | % BIAS = 1 |
---|
| 31 | % TYPE = 'STANDARD' |
---|
| 32 | % PARAM = [] |
---|
| 33 | % |
---|
| 34 | % DESCRIPTION |
---|
| 35 | % Classification problem on a N x M dissimilarity dataset D with LP-machines. |
---|
| 36 | % D should be described by both label and feature lists. If D is a square, |
---|
| 37 | % symmetric matrix, then the feature list should be the same as the label list. |
---|
| 38 | % |
---|
| 39 | % Assume a 2-class problem. Let DLPC select J support objects. Then: |
---|
| 40 | % W1 is an M x 2 classifier in the original dissimilarity space, W2 is an J x 2 |
---|
| 41 | % classifier in the dissimilarity space defined by the J support objects |
---|
| 42 | % and W3 is an M x R feature selection such that W1 = W3 * W2. |
---|
| 43 | % Note that the indices of the support objects can be retrieved by +W3. |
---|
| 44 | % |
---|
| 45 | % A linear classifier is built on D: |
---|
| 46 | % |
---|
| 47 | % f(D(x,*)) = diag(Y) * D(x,*) * W + W0, |
---|
| 48 | % |
---|
| 49 | % where Y are labels (+/- 1) and W are the weights. If BIAS is 1, then W0 is also |
---|
| 50 | % sought, otherwise it equals 0, hence the hyperplane is forced to go through the origin. |
---|
| 51 | % |
---|
| 52 | % For C-class problems, C classifiers are trained, one against all others. |
---|
| 53 | % In such a case, only W1 is returned and W3 in now NOT a feature selection, |
---|
| 54 | % but directly the indices of the support objects. |
---|
| 55 | |
---|
| 56 | |
---|
| 57 | % |
---|
| 58 | % Let [n,k] = size(D). Assume a two-class problem. |
---|
| 59 | % Any multi-class problem is converted one-against-all to two-class problems. |
---|
| 60 | % Y are the labels (converted +/-1) |
---|
| 61 | % D_Y = diag(Y_r) * D * diag(Y_c), |
---|
| 62 | % where Y_r are the labels for rows of D and |
---|
| 63 | % Y_c are the labels for columns. |
---|
| 64 | % alpha is the sought solution. |
---|
| 65 | % |
---|
| 66 | % Internal - the optimization schema (A,b,f) refer to the constraints in |
---|
| 67 | % the standard Matlab LINPROG procedure. |
---|
| 68 | % |
---|
| 69 | % 'simple': |
---|
| 70 | % min 0^T * alpha(1:k) (= 0) |
---|
| 71 | % s.t. [D_Y Y] * [alpha(1:k) alpha_0)] >= 1 |
---|
| 72 | % |
---|
| 73 | % A = [D_Y Y] is n x (k+1) |
---|
| 74 | % b = 1(n,1) |
---|
| 75 | % f = 0(k+1,1) |
---|
| 76 | % |
---|
| 77 | % |
---|
| 78 | % 'standard': |
---|
| 79 | % min p^T * beta(1:n), p = 1/n_i for the class_i |
---|
| 80 | % s.t. [D_Y Y] * [alpha(1:k) alpha_0] + beta(1:n) >= 1, |
---|
| 81 | % beta >= 0 |
---|
| 82 | % |
---|
| 83 | % A = [D_Y Y eye(n)] |
---|
| 84 | % b = 1(n,1) |
---|
| 85 | % f = [0(k+1,1) p]^T |
---|
| 86 | % |
---|
| 87 | % |
---|
| 88 | % 'c-sparse': |
---|
| 89 | % min sum(alpha(1:k)) + sum (alpha2(1:k)) + C*sum(ksi) |
---|
| 90 | % s.t. [D_Y Y] * [alpha(1:k)-alpha2(1:k) alpha_0] + ksi(1:n) >= 1, |
---|
| 91 | % ksi >= 0 |
---|
| 92 | % alpha, alpha2 >= 0 |
---|
| 93 | % |
---|
| 94 | % A = [D_Y -D_Y Y eye(n,n)] |
---|
| 95 | % b = 1(n,1) |
---|
| 96 | % f = [0(k+1,1)]^T |
---|
| 97 | % |
---|
| 98 | % |
---|
| 99 | % 'mu-sparse': |
---|
| 100 | % min sum(ksi)/n - mu*g |
---|
| 101 | % s.t. [D_Y -D_Y Y] * [alpha(1:k)-alpha2(1:k) alpha_0] + ksi(1:n) >= g, |
---|
| 102 | % sum(alpha) + sum(alpha2) = 1 |
---|
| 103 | % alpha, alpha2 >= 0 |
---|
| 104 | % ksi >= 0 |
---|
| 105 | % |
---|
| 106 | % A = [D_Y -D_Y Y eye(n,n)] |
---|
| 107 | % b = 1(n,1) |
---|
| 108 | % f = [0(2k+1,1)] |
---|
| 109 | % |
---|
| 110 | |
---|
| 111 | |
---|
| 112 | % Elzbieta Pekalska, Robert P.W. Duin, e.pekalska@tudelft.nl |
---|
| 113 | % Faculty of Electrical Engineering, Mathematics and Computer Science, |
---|
| 114 | % Delft University of Technology, The Netherlands. |
---|
| 115 | |
---|
| 116 | |
---|
| 117 | |
---|
| 118 | function [W1,W2,W3] = dlpc (d,is_w0,type,par,usematlab,prec) |
---|
| 119 | if nargin < 6, prec = 1e-7; end |
---|
| 120 | if nargin < 5, usematlab = 0; end |
---|
| 121 | if nargin < 3 | isempty(type), type = 'standard'; end |
---|
| 122 | if nargin < 4 |
---|
| 123 | par = []; |
---|
| 124 | end |
---|
| 125 | if nargin < 2 | isempty(is_w0), is_w0 = 1; end |
---|
| 126 | if nargin < 1 | isempty(d) |
---|
[79] | 127 | W1 = prmapping(mfilename,{is_w0,type,par,usematlab}); |
---|
[10] | 128 | W1 = setname(W1,'DLPC'); |
---|
| 129 | W2 = []; |
---|
| 130 | W3 = []; |
---|
| 131 | return |
---|
| 132 | end |
---|
| 133 | |
---|
| 134 | |
---|
| 135 | if ~isdataset(d), |
---|
| 136 | error('The first parameter should be a dataset.') |
---|
| 137 | end |
---|
| 138 | if ~isnumeric(is_w0) | (is_w0 ~= 0 & is_w0 ~= 1), |
---|
| 139 | error('The second parameter should be 0 or 1.'); |
---|
| 140 | end |
---|
| 141 | |
---|
| 142 | if isempty(par), |
---|
| 143 | switch upper(type) |
---|
| 144 | case 'MU-SPARSE', |
---|
| 145 | par = max(0.01,1.3*testkd(d,1,'loo')); % upperbound error: 1.3 * loo 1-nn error |
---|
| 146 | case 'C-SPARSE', |
---|
| 147 | par = 1; |
---|
| 148 | case {'SIMPLE','STANDARD'}, |
---|
| 149 | par = []; |
---|
| 150 | otherwise |
---|
| 151 | error('Wrong type.') |
---|
| 152 | end |
---|
| 153 | end |
---|
| 154 | |
---|
| 155 | lab = getnlab(d); |
---|
| 156 | lablist = getlablist(d); |
---|
| 157 | featlab = getfeatlab(d); |
---|
| 158 | [m,k,C] = getsize(d); |
---|
| 159 | |
---|
| 160 | [nl, fe, fl] = renumlab(lablist,featlab); |
---|
| 161 | if max(fe) > size(lablist,1) |
---|
| 162 | error('Feature labels of the dataset do not match with class labels.') |
---|
| 163 | end |
---|
| 164 | |
---|
| 165 | |
---|
| 166 | |
---|
| 167 | z = (is_w0 > 0); % is bias used or not? |
---|
| 168 | |
---|
| 169 | % This is the status of the optimization procedure. |
---|
| 170 | % For GLPK, this is the exit code; see GLPKMEX for details. |
---|
| 171 | % For Matlab LINPROG, if negative then no solution is found. |
---|
| 172 | |
---|
| 173 | status = 1; |
---|
| 174 | |
---|
| 175 | |
---|
| 176 | % If more than 2 classes, do one against all others. |
---|
| 177 | if C > 2, |
---|
[79] | 178 | % W1 = mclassc(d,prmapping(mfilename,{is_w0,type,par,usematlab})); |
---|
[10] | 179 | |
---|
| 180 | W1 = []; |
---|
| 181 | W2 = []; |
---|
| 182 | W3 = []; |
---|
| 183 | N = []; |
---|
| 184 | for i=1:C |
---|
| 185 | mlab = 2 - (lab == i); |
---|
| 186 | mfe = 2 - (fe == i); |
---|
| 187 | dd = setlabels(d,mlab); |
---|
| 188 | dd = setfeatlab(dd,mfe); |
---|
| 189 | if ~isempty(d.prior) |
---|
| 190 | dd = setprior(dd,[d.prior(i),1-d.prior(i)]'); |
---|
| 191 | end |
---|
| 192 | [v1,v2,v3]= dlpc(dd,is_w0,type,par,usematlab); |
---|
| 193 | j = +v3; |
---|
| 194 | if isempty(v1), |
---|
| 195 | W1 = []; |
---|
| 196 | W2 = []; |
---|
| 197 | W3 = []; |
---|
| 198 | prwarning(1,'No solution found.'); |
---|
| 199 | return; |
---|
| 200 | end |
---|
| 201 | W1 = [W1,setlabels(v1(:,1),lablist(i,:))]; |
---|
| 202 | W2 = [W2;setlabels(v2(:,1),lablist(i,:))]; |
---|
| 203 | W3(j) = ones(length(j),1); |
---|
| 204 | N = [N j]; |
---|
| 205 | end |
---|
| 206 | [N1,N2,N3] = unique(N); |
---|
| 207 | W3 = featsel(k,N1); |
---|
| 208 | %disp(size(W3,2)) |
---|
| 209 | W2 = featsel(length(N1),N3)*W2; |
---|
| 210 | return |
---|
| 211 | |
---|
| 212 | else |
---|
| 213 | |
---|
| 214 | Y1 = 3 - 2 * lab; % labels +/-1 |
---|
| 215 | Y = 3 - 2 * fe; % featlabels +/-1 |
---|
| 216 | |
---|
| 217 | alpha(1:k+1,1) = 0; |
---|
| 218 | |
---|
| 219 | |
---|
| 220 | switch type |
---|
| 221 | case 'simple', |
---|
| 222 | f = zeros(k+z,1); |
---|
| 223 | b = -ones(m,1); |
---|
| 224 | if is_w0, |
---|
| 225 | A = -[(Y1*Y').* +d Y1]; |
---|
| 226 | else |
---|
| 227 | A = -[(Y1*Y').* +d]; |
---|
| 228 | end |
---|
| 229 | |
---|
| 230 | % if (exist('glpkmex')>0) & (usematlab==0) |
---|
| 231 | % smin = 1; % solve minimum |
---|
| 232 | % ctype = char(ones(m,1)*abs('U')); % Sign of inequalities |
---|
| 233 | % vartype = char(ones(k+z,1)*abs('C')); % Continous variables |
---|
| 234 | % lpsolver = 2; % Interior Point Method |
---|
| 235 | % lpsolver = 1; % Revised Simlex Method |
---|
| 236 | % params.msglev = 0; % no outputs |
---|
| 237 | % [al,fval,status] = glpkmex(smin,f,A,b,ctype,[],[],vartype,params,lpsolver); |
---|
| 238 | % else |
---|
| 239 | % [al,fval,status] = linprog(f,A,b); |
---|
| 240 | % end |
---|
| 241 | |
---|
| 242 | [al,fval,status] = linprog(f,A,b); |
---|
| 243 | alpha(1:k+z) = al; |
---|
| 244 | |
---|
| 245 | |
---|
| 246 | |
---|
| 247 | case 'standard', |
---|
| 248 | L = ones(k,1); |
---|
| 249 | I = find(Y==1); |
---|
| 250 | if ~isempty(I) |
---|
| 251 | L(I) = L(I)/length(I); |
---|
| 252 | end |
---|
| 253 | J = find(Y==-1); |
---|
| 254 | if ~isempty(J) |
---|
| 255 | L(J) = L(J)/length(J); |
---|
| 256 | end |
---|
| 257 | |
---|
| 258 | f = [zeros(k+z,1); L]; |
---|
| 259 | lb = [-Inf .*ones(k+z,1); zeros(k,1)]; |
---|
| 260 | ub = Inf .* ones(2*k+z,1); |
---|
| 261 | b = -ones(m,1); |
---|
| 262 | if is_w0, |
---|
| 263 | A = -[(Y1*Y').* +d Y1 eye(m,k)]; |
---|
| 264 | else |
---|
| 265 | A = -[(Y1*Y').* +d eye(m,k)]; |
---|
| 266 | end |
---|
| 267 | |
---|
| 268 | % if (exist('glpkmex')>0) & (usematlab==0) |
---|
| 269 | % smin = 1; % solve minimum |
---|
| 270 | % ctype = char(ones(m,1)*abs('U')); % Sign of inequalities |
---|
| 271 | % vartype = char(ones(2*k+z,1)*abs('C')); % Continous variables |
---|
| 272 | %% lpsolver = 2; % Interior Point Method |
---|
| 273 | % lpsolver = 1; % Revised Simlex Method |
---|
| 274 | % params.msglev = 0; % no outputs |
---|
| 275 | % [sss,hostname] = unix('hostname'); |
---|
| 276 | % hostname = hostname(1:end-1); |
---|
| 277 | % if strcmp(hostname,'saturnus') | strcmp(hostname,'polaris') | strcmp(hostname,'neptunus') |
---|
| 278 | % [al,fval,status] = glpkmex_redhat(smin,f,A,b,ctype,lb,ub,vartype,params,lpsolver); |
---|
| 279 | % else |
---|
| 280 | % [al,fval,status] = glpkmex(smin,f,A,b,ctype,lb,ub,vartype,params,lpsolver); |
---|
| 281 | % end |
---|
| 282 | % else |
---|
| 283 | % [al,fval,ststus] = linprog(f,A,b,[],[],lb,ub); |
---|
| 284 | % end |
---|
| 285 | |
---|
| 286 | [al,fval,ststus] = linprog(f,A,b,[],[],lb,ub); |
---|
| 287 | alpha(1:k+z) = al(1:k+z); |
---|
| 288 | |
---|
| 289 | |
---|
| 290 | |
---|
| 291 | case 'c-sparse', |
---|
| 292 | L = ones(k,1); |
---|
| 293 | ub = Inf .* ones(3*k+z,1); |
---|
| 294 | lb = [zeros(2*k,1); -Inf.*ones(z,1); zeros(k,1)]; |
---|
| 295 | b = -ones(m,1); |
---|
| 296 | |
---|
| 297 | dd = (Y1*Y').* +d; |
---|
| 298 | if is_w0, |
---|
| 299 | f = [ones(2*k,1); 0; par*L]; |
---|
| 300 | A = -[dd -dd Y1 eye(m,k)]; |
---|
| 301 | else |
---|
| 302 | f = [ones(2*k,1); par*L]; |
---|
| 303 | A = -[dd -dd eye(m,k)]; |
---|
| 304 | end |
---|
| 305 | if (exist('glpkmex')>0) & (usematlab==0) |
---|
| 306 | smin = 1; % solve minimum |
---|
| 307 | ctype = char([ones(m,1)*abs('U')]); % Sign of inequalities |
---|
| 308 | vartype = char(ones(3*k+z,1)*abs('C')) ; % Continuous variables |
---|
| 309 | % lpsolver = 1; % Revised Simlex Method |
---|
| 310 | lpsolver = 2; % Interior Point Method |
---|
| 311 | params.msglev = 0; % no outputs |
---|
| 312 | params.itlim = 400; % iteration limit |
---|
| 313 | [sss,hostname] = unix('hostname'); |
---|
| 314 | hostname = hostname(1:end-1); |
---|
| 315 | if strcmp(hostname,'saturnus') | strcmp(hostname,'polaris') | strcmp(hostname,'neptunus') |
---|
| 316 | [al,fval,status] = glpkmex_redhat(smin,f,A,b,ctype,lb,ub,vartype,params,lpsolver); |
---|
| 317 | else |
---|
| 318 | [al,fval,status] = glpkmex(smin,f,A,b,ctype,lb,ub,vartype,params,lpsolver); |
---|
| 319 | end |
---|
| 320 | else |
---|
| 321 | [al,fval,status] = linprog (f,A,b,[],[],lb,ub); |
---|
| 322 | end |
---|
| 323 | alpha(1:k) = al(1:k) - al(k+1:2*k); |
---|
| 324 | if is_w0, |
---|
| 325 | alpha(k+1) = al(2*k+1); |
---|
| 326 | end |
---|
| 327 | |
---|
| 328 | |
---|
| 329 | |
---|
| 330 | case 'mu-sparse', |
---|
| 331 | L = ones(k,1)/k; |
---|
| 332 | f = [zeros(2*k+z,1); L; -par]; |
---|
| 333 | ub = Inf .* ones(3*k+1+z,1); |
---|
| 334 | lb = [zeros(2*k,1); -Inf.*ones(z,1); zeros(k+1,1)]; |
---|
| 335 | Aeq = [ones(2*k,1); zeros(k+1+z,1)]'; |
---|
| 336 | beq = 1; |
---|
| 337 | b = zeros(m,1); |
---|
| 338 | dd = (Y1*Y').* +d; |
---|
| 339 | |
---|
| 340 | if is_w0, |
---|
| 341 | A = -[dd -dd Y1 eye(m,k) -ones(m,1)]; |
---|
| 342 | else |
---|
| 343 | A = -[dd -dd eye(m,k) -ones(m,1)]; |
---|
| 344 | end |
---|
| 345 | |
---|
| 346 | if (exist('glpkmex')>0) & (usematlab==0) |
---|
| 347 | smin = 1; % solve minimum |
---|
| 348 | ctype = char([ones(m,1)*abs('U'); 'S']); % Sign of inequalities |
---|
| 349 | vartype = char(ones(3*k+1+z,1)*abs('C')); % Continous variables |
---|
| 350 | % lpsolver = 1; % Revised Simlex Method |
---|
| 351 | lpsolver = 2; % Interior Point Method |
---|
| 352 | params.msglev = 0; % no outputs, but doesn't seem to work |
---|
| 353 | params.itlim = 400; % iteration limit |
---|
| 354 | [sss,hostname] = unix('hostname'); |
---|
| 355 | hostname = hostname(1:end-1); |
---|
| 356 | if strcmp(hostname,'saturnus') | strcmp(hostname,'polaris') | strcmp(hostname,'neptunus') |
---|
| 357 | [al,fval,status] = glpkmex_redhat(smin,f,[A; Aeq],[b; beq],ctype,lb,ub,vartype,params,lpsolver); |
---|
| 358 | else |
---|
| 359 | [al,fval,status] = glpkmex(smin,f,[A; Aeq],[b; beq],ctype,lb,ub,vartype,params,lpsolver); |
---|
| 360 | end |
---|
| 361 | else |
---|
| 362 | [al,fval,status] = linprog(f,A,b,Aeq,beq,lb,ub); |
---|
| 363 | end |
---|
| 364 | |
---|
| 365 | alpha(1:k) = al(1:k) - al(k+1:2*k); |
---|
| 366 | if is_w0, |
---|
| 367 | alpha(k+1) = al(2*k+1); |
---|
| 368 | end |
---|
| 369 | |
---|
| 370 | otherwise |
---|
| 371 | error ('Wrong type.'); |
---|
| 372 | end |
---|
| 373 | end |
---|
| 374 | |
---|
| 375 | if (status <= 0) | (status > 181 | status == 150), |
---|
| 376 | prwarning(1,'Fisher classifier is trained.'); |
---|
| 377 | W1 = fisherc(d); |
---|
| 378 | W2 = W1; |
---|
| 379 | W3 = featsel(k,[1:k]); |
---|
| 380 | return; |
---|
| 381 | end |
---|
| 382 | |
---|
| 383 | |
---|
| 384 | % Choose support objects |
---|
| 385 | ss = sum(abs(alpha(1:k))); |
---|
| 386 | J = find(abs(alpha(1:k)) > ss*prec); |
---|
| 387 | if ~isempty(J), |
---|
| 388 | W3 = featsel(k,J); |
---|
| 389 | w = [Y; 1] .* alpha(1:k+1); |
---|
| 390 | W2 = affine(w(J),w(k+1),d(:,J),lablist,k,2); |
---|
| 391 | W2 = cnormc(W2,d(:,J)); |
---|
| 392 | W1 = W3*W2; |
---|
| 393 | W1 = setname(W1,'DLPC'); |
---|
| 394 | W2 = setname(W2,'DLPC'); |
---|
| 395 | else |
---|
| 396 | prwarning(1,'No support objects found. Fisher classifier is trained.'); |
---|
| 397 | W1 = fisherc(d); |
---|
| 398 | W2 = W1; |
---|
| 399 | W3 = featsel(k,[1:k]); |
---|
| 400 | return; |
---|
| 401 | end |
---|
| 402 | % disp(size(W3,2)) |
---|
| 403 | return; |
---|