[18] | 1 | %% DisTools Table of Contents
|
---|
| 2 | %% 23-Nov-2009_17:27
|
---|
| 3 | %%
|
---|
| 4 | %% This Matlab toolbox for the analysis of dissimilarity data works only
|
---|
| 5 | %% if also the pattern recognition toolbox PRTools is available.
|
---|
| 6 | %% See http://prtools.org
|
---|
| 7 | %%
|
---|
| 8 | %% E. Pekalska, ela.pekalska@googlemail.com, University of Manchester
|
---|
| 9 | %% R.P.W. Duin, r.duin@ieee.org, Delft University of Technology
|
---|
| 10 | %%
|
---|
| 11 | %% Characterization of dissimilarity matrices
|
---|
| 12 | %% ------------------------------------------
|
---|
| 13 | %% CHECKEUCL Check whether a square dissimilarity matrix has a Euclidean behavior
|
---|
| 14 | %% CHECKTR Check whether a square dissimilarity matrix obeys triangle inequality
|
---|
| 15 | %% CHARDMAT Fiand several characteristic of (dis)similarity data
|
---|
| 16 | %% CORRTR Correct a square dissimilarity matrix to obey the triangle inequality
|
---|
| 17 | %% DISCHECK Dissimilarity matrix check
|
---|
| 18 | %% DISNORM Normalization of a dissimilarity matrix
|
---|
| 19 | %% DISSTAT Basic statistics of the dissimilarity matrix
|
---|
| 20 | % GOFCL Goodness of clusters/classes separability vs compactness for dissimilarity data
|
---|
| 21 | % INTRDIM Estimate Intrinsic dimension from dissimilarity data
|
---|
| 22 | %% ISSQUARE Check whether a matrix is square
|
---|
| 23 | %% ISSYM Check whether a matrix is symmetric
|
---|
| 24 | %% ASYMMETRY Compute asymmetry of dissimilarity matrix
|
---|
| 25 | %% NEF Negative Eigen Fraction
|
---|
| 26 | %% NNE Leave-one-out Nearest Neighbor error on a dissimilarity matrix
|
---|
| 27 | %% NNERR Exact expected NN error from a dissimilarity matrix
|
---|
| 28 | % NNERROR Exact expected NN error from a dissimilarity matrix (2)
|
---|
| 29 | % VAT Visual Assessment of cluster Tendency for dissimilarity matrices
|
---|
| 30 | %
|
---|
| 31 | %%
|
---|
| 32 | %% Dissimilarity Measures
|
---|
| 33 | %% -----------------------------------------------
|
---|
| 34 | % BINDISTM Dissimilarity matrix between binary vectors
|
---|
| 35 | % BLURDISTM Blurred Euclidean distance matrix between blobs
|
---|
| 36 | % BLOBBOX Find box around a binary blob and resample
|
---|
| 37 | % CORRDISTM Distance matrix based on correlations
|
---|
| 38 | %% COSDISTM Distance matrix based on inner products
|
---|
| 39 | % DPROCRUSTDM Distance matrix between datasets based on extended Procrustes problem
|
---|
| 40 | % EDGEDISTM Distance matrix between images based on their edges
|
---|
| 41 | % EDITDISTM Edit distance matrix between strings
|
---|
| 42 | %% EUDISTM Euclidean distance matrix
|
---|
| 43 | % EXPDISTM Exponential-type of distance matrix
|
---|
| 44 | % FLPDISTM Fast computation of the lp (p > 0) distance matrix
|
---|
| 45 | %% HAMDISTM Hamming distance matrix between binary vectors
|
---|
| 46 | %% HAUSDM Hausdorff and modified Hausdorff distance between datasets of image blobs
|
---|
| 47 | % JACSIMDISTM Jaccard-like distance matrix based on similarities
|
---|
| 48 | % LPDISTM l_p (p > 0) distance matrix
|
---|
| 49 | % QDISTM Distance matrix for quantitative variables
|
---|
| 50 | % RANKDISTM Distance matrix between two data sets based on ranking
|
---|
| 51 | % SAMDISTM Distance matrix based on Spectral Angular Mapper (SAM)
|
---|
| 52 | % STRKERM String Kernel Matrix by Lodhi et al
|
---|
| 53 | %
|
---|
| 54 | %%
|
---|
| 55 | %% Transformations and projections
|
---|
| 56 | %% -----------------------------------------------
|
---|
| 57 | %% DISSIMT Fixed DISsimilarity-SIMilarity transformation
|
---|
| 58 | % KCENTERM Kernel weighted centering mapping (also for a similarity matrix)
|
---|
| 59 | %% MAKESYM Make a matrix symmetric
|
---|
| 60 | % PROXXM Proximity mapping
|
---|
| 61 | % SIGMOID Element-wise sigmoid tranformation of a matrix
|
---|
| 62 | % FASTMAPD FastMap; inear projection of Euclidean distances
|
---|
| 63 | %% PE_EM Pseudo-Euclidean embedding (includes Classical Scaling as a special case)
|
---|
| 64 | % SPHEM Spherical Embedding
|
---|
| 65 | %
|
---|
| 66 | %%
|
---|
| 67 | %% Classification in Pseudo-Euclidean Space and indefinite kernels
|
---|
| 68 | %% -----------------------------------------------
|
---|
| 69 | % PE_AFFINE
|
---|
| 70 | %% SETSIG Set PE signature for mappings or datasets
|
---|
| 71 | %% GETSIG Set PE signature for mappings or datasets
|
---|
| 72 | %% ISPE_DATASET Test dataset for PE signature setting
|
---|
| 73 | %% ISPE_EM Test mapping for PE signature setting
|
---|
| 74 | %% PE_DISTM Square pseudo-Euclidean distance between two datasets
|
---|
| 75 | %% PE_KERNELM Compute kernel in PE space
|
---|
| 76 | % PE_LIBSVC Libsvc for PE spaces
|
---|
| 77 | %% PE_MTIMES Matrix multiplication (inner product) in PE space
|
---|
| 78 | %% PE_PARZENC Parzen classifier in PE space
|
---|
| 79 | %% PE_KNNC KNN classifier in PE space
|
---|
| 80 | %% PE_NMC Nearest mean classifier in PE space
|
---|
| 81 | %% PE_EM Pseudo-Euclidean linear embedding of dissimilarities
|
---|
| 82 | % KEM Kernel embedding
|
---|
| 83 | %% PLOTSPECTRUM Plot spectrum of eigenvalues
|
---|
| 84 | % PSPCA Pseudo-Euclidean Principal Component Analysis
|
---|
| 85 | %
|
---|
| 86 | % Indefinte kernel routines
|
---|
| 87 | % -------------------------
|
---|
| 88 | % IKFD Indefinite Kernel Fisher discriminant
|
---|
| 89 | % IKPCA Indefinite Kernel PCA
|
---|
| 90 | %
|
---|
| 91 | %%
|
---|
| 92 | %% Routines supporting in learning from dissimilarity matrices
|
---|
| 93 | %% -----------------------------------------------------------------------
|
---|
| 94 | %% CROSSVALD Cross-validation error for dissimilarity representations
|
---|
| 95 | % CLEVALD Classifier evaluation (Learning curve)
|
---|
| 96 | %% DISSPACES Compute various spaces out of a dissimilarity matrix
|
---|
| 97 | %% GENDDAT Generate random training and test sets for dissimilarity data
|
---|
| 98 | %% GENREP Generate a representation set
|
---|
| 99 | %% GENREPI Generate indices for representation, learning and testing sets
|
---|
| 100 | %% SELCDAT Select Class Subset from a Square Dissimilarity Dataset
|
---|
| 101 | %% PROTSELFD Forward prototype selection
|
---|
| 102 | % AUCDLPC AUC-LP classifier on dissimilarity data
|
---|
| 103 | %% DLPC LP-classifier on dissimilarity (proximity) data
|
---|
| 104 | % DRSSCC Dissimilarity-based random subspace combining classifier
|
---|
| 105 | %% KNNDC K-Nearest Neighbor classifier for dissimilarity matrices
|
---|
| 106 | %% PARZENDDC Parzen classifier for dissimilarity matrices
|
---|
| 107 | % KFD Kernel Fisher Discriminant
|
---|
| 108 | % KSVC Kernel Support Vector classifier on a kernel matrix
|
---|
| 109 | % KSVO Kernel Support Vector Optimizer
|
---|
| 110 | % KSVC_NU Kernel Support Vector classifier on a kernel matrix; nu-version
|
---|
| 111 | % KSVO_NU Kernel Support Vector Optimizer; nu-version
|
---|
| 112 | % MCLASSDC Multi-Class Dissimilarity-based Classifier from Two-Class Discriminants
|
---|
| 113 | %% TESTKD Test k-NN classifier for dissimilarity data
|
---|
| 114 | %% TESTPD Test Parzen classifier for dissimilarity data
|
---|
| 115 | % TQDC Trade-off Quadratic Discriminant (Regularized Bayes Normal Classifier)
|
---|
| 116 | %
|
---|
| 117 | %
|
---|
| 118 | % Graphs and distances
|
---|
| 119 | % -----------------------------------------------
|
---|
| 120 | % DISTGRAPH Computes distances in a graph
|
---|
| 121 | % DMSTSPM Finds the shortest paths along K minimum spanning trees
|
---|
| 122 | % DSPATH Single shortest path in a (dissimilarity) graph
|
---|
| 123 | % DSPATHS All shortest paths in a (dissimilarity) Graph
|
---|
| 124 | % GRAPHPATH Compute shortest paths in a graph
|
---|
| 125 | % KMST Finds K minimum spanning trees based on a distance matrix
|
---|
| 126 | % MSTPLOT Plot minimum spanning trees
|
---|
| 127 | % NHGRAPH Find a neighborhood graph and its shortest paths
|
---|
| 128 | % PLOTGRAPH Plot a 2D graph
|
---|
| 129 | %%
|
---|
| 130 | %% EXAMPLES
|
---|
| 131 | %% --------
|
---|
| 132 | %% CROSSVALD_EX Crossvalidation of several classifiers
|
---|
| 133 |
|
---|
| 134 | % Superfluous / outdated but still available
|
---|
| 135 | % -------------------------------------------------
|
---|
| 136 | % KPCA, AUGPSEM, PSEM
|
---|
| 137 | % |
---|