[1] | 1 | %HAUSDM Hausdorff and modified Hausdorff distance between datasets of image blobs |
---|
| 2 | % |
---|
| 3 | % [DH,DM] = HAUSDM(A,B,FID) |
---|
| 4 | % |
---|
| 5 | % INPUT |
---|
| 6 | % A XAxYAxNA matrix of NA binary images of the size XA x YA |
---|
| 7 | % B XBxYBxNB matrix of NB binary images of the size XB x YB |
---|
| 8 | % FID 0/1 Report progress on the screen (default: 0) |
---|
| 9 | % |
---|
| 10 | % OUTPUT |
---|
| 11 | % DH NAxNB Hausdorff distance matrix |
---|
| 12 | % DM NAxNB Modified Hausdorff distance matrix |
---|
| 13 | % |
---|
| 14 | % DESCRIPTION |
---|
| 15 | % Computes a Hausdorff distance matrix DH and a modified Hausdorff distance |
---|
| 16 | % matrix DM between the sets of binary images A and B, or datasets containing |
---|
| 17 | % them as features. Preferably, NA <= NB (faster computation). |
---|
| 18 | % Progress is reported in fid (fid = 1: on the sreeen). |
---|
| 19 | % |
---|
| 20 | % LITERATURE |
---|
| 21 | % M.-P. Dubuisson and A.K. Jain, "Modified Hausdorff distance for object matching", |
---|
| 22 | % International Conference on Pattern Recognition, vol. 1, 566-568, 1994. |
---|
| 23 | % |
---|
| 24 | |
---|
| 25 | % Copyright: R.P.W. Duin, r.duin@ieee.org |
---|
| 26 | % Faculty of EWI, Delft University of Technology |
---|
| 27 | |
---|
| 28 | |
---|
| 29 | function [dh,dm] = hausdm(A,B,fid) |
---|
| 30 | |
---|
| 31 | if nargin < 3, fid = 0; end |
---|
| 32 | if isdataset(A) & isdataset(B) |
---|
| 33 | [dh,dm] = hausdm(data2im(A),data2im(B),fid); |
---|
| 34 | dh = setdata(A,dh); |
---|
| 35 | dm = setdata(A,dm); |
---|
| 36 | return |
---|
| 37 | end |
---|
| 38 | |
---|
| 39 | [ma1,ma2,na] = size(A); |
---|
| 40 | [mb1,mb2,nb] = size(B); |
---|
| 41 | dh = zeros(na,nb); |
---|
| 42 | dm = zeros(na,nb); |
---|
| 43 | for i=1:na |
---|
| 44 | a = A(:,:,i); |
---|
| 45 | J = find(any(a)); |
---|
| 46 | J = [min(J):max(J)]; |
---|
| 47 | K = find(any(a')); |
---|
| 48 | K = [min(K):max(K)]; |
---|
| 49 | a = double(a(K,J)); |
---|
| 50 | if length(a(:)) > 0 |
---|
| 51 | a = bord(a,0); |
---|
| 52 | end |
---|
| 53 | ca = contourc(a,[0.5,0.5]); |
---|
| 54 | J = find(ca(1,:) == 0.5); |
---|
| 55 | ca(:,[J J+1]) =[]; |
---|
| 56 | ca = ca - repmat([1.5;1.5],1,size(ca,2)); |
---|
| 57 | ca = ca/max(ca(:)); |
---|
| 58 | ca = ca - repmat(max(ca,[],2)/2,1,size(ca,2)); |
---|
| 59 | for j = 1:nb |
---|
| 60 | b = B(:,:,j); |
---|
| 61 | J = find(any(b)); |
---|
| 62 | J = [min(J):max(J)]; |
---|
| 63 | K = find(any(b')); |
---|
| 64 | K = [min(K):max(K)]; |
---|
| 65 | b = double(b(K,J)); |
---|
| 66 | if length(b(:)) > 0 |
---|
| 67 | b = bord(b,0); |
---|
| 68 | end |
---|
| 69 | cb = contourc(b,[0.5,0.5]); |
---|
| 70 | J = find(cb(1,:) == 0.5); |
---|
| 71 | cb(:,[J J+1]) =[]; |
---|
| 72 | cb = cb - repmat([1.5;1.5],1,size(cb,2)); |
---|
| 73 | cb = cb/max(cb(:)); |
---|
| 74 | cb = cb - repmat(max(cb,[],2)/2,1,size(cb,2)); |
---|
| 75 | dab = sqrt(distm(ca',cb')); |
---|
| 76 | dh(i,j) = max(max(min(dab)),max(min(dab'))); |
---|
| 77 | dm(i,j) = max(mean(min(dab)),mean(min(dab'))); |
---|
| 78 | if fid, disp([i,j,dh(i,j),dm(i,j)]); end |
---|
| 79 | % fprintf(fid,'%5d %5d %10.3f %8.3f \n',i,j,dh(i,j),dm(i,j)); |
---|
| 80 | end |
---|
| 81 | end |
---|
| 82 | |
---|