[1] | 1 | %AUGPSEM Augmented Pseudo-Euclidean Linear Embedding
|
---|
| 2 | %
|
---|
| 3 | % --- THIS IS A TEST VERSION! DO NOT RELY ON IT. ----
|
---|
| 4 | %
|
---|
| 5 | % [W,SIG,L] = AUGPSEM(D,ALF,P)
|
---|
| 6 | %
|
---|
| 7 | % INPUT
|
---|
| 8 | % D NxN symmetric dissimilarity matrix (dataset)
|
---|
| 9 | % ALF Parameter determining the dimensionality and the mapping (optional, defaulf: Inf)
|
---|
| 10 | % (0,1) - fraction of the total (absolute value) preserved variance
|
---|
| 11 | % Inf - no dimensionality reduction, keeping all dimensions (it's noisy)
|
---|
| 12 | % 'p' - projection into a Euclidean space based on positive eigenvalues only
|
---|
| 13 | % 'PARp' - projection into a Euclidean space based on the PAR fraction of
|
---|
| 14 | % positive eigenvalues; e.g. ALF = '0.9p'
|
---|
| 15 | % 'n' - projection into a Euclidean space based on negative eigenvalues only
|
---|
| 16 | % 'PARn' - projection into a Euclidean space based on the PAR fraction of
|
---|
| 17 | % positive eigenvalues; e.g. ALF = '0.7n'
|
---|
| 18 | % 1 .. N - number of dimensions <= N
|
---|
| 19 | % P Integer between 0 and N specifying which object is mapped at the origin;
|
---|
| 20 | % 0 stands for the mean; (optional, default: 0)
|
---|
| 21 | %
|
---|
| 22 | % OUTPUT
|
---|
| 23 | % W Augmented pseudo-Euclidean embedding
|
---|
| 24 | % SIG Signature of the space
|
---|
| 25 | % L List of eigenvalues
|
---|
| 26 | %
|
---|
| 27 | % DEFAULT
|
---|
| 28 | % ALF = INF
|
---|
| 29 | % P = 0
|
---|
| 30 | %
|
---|
| 31 | % DESCRIPTION
|
---|
| 32 | % Linear mapping W onto an M-dimensional pseudo-Euclidean subspace from a symmetric,
|
---|
| 33 | % square dissimilarity matrix D such that the dissimilarities are preserved.
|
---|
| 34 | % M is determined by ALF. E.g., the subspace is found such that at least a fraction
|
---|
| 35 | % ALF of the total variance is preserved for ALF in (0,1). The resulting X is found
|
---|
| 36 | % by D*W.
|
---|
| 37 | % This is an augmented embedding of the standard pseudo-Euclidean embedding (PSEM)
|
---|
| 38 | % such that the dissimilairites are perfectly preserved. The augmentation is by one
|
---|
| 39 | % (Euclidean case) or two (pseudo-Euclidean case) dimensions. This has no effect
|
---|
| 40 | % on the original data D(R,R); the additional dimension(s) are zeros. The effect
|
---|
| 41 | % is apparent when test data D(Te,R) are projected. Due to the projection error,
|
---|
| 42 | % the new dissimilarities are not preserved by PSEM, while they are preserved by
|
---|
| 43 | % the augmented embedding.
|
---|
| 44 | %
|
---|
| 45 | % The parameter SIG describes the signature of the subspace. L is a sorted list
|
---|
| 46 | % of eigenvalues describing the variances in the (pseudo-)Euclidean space.
|
---|
| 47 | %
|
---|
| 48 | % SEE ALSO
|
---|
| 49 | % PSEM, MAPPINGS, DATASETS
|
---|
| 50 | %
|
---|
| 51 | % LITERATURE
|
---|
| 52 | % 1. A. Harol, E.Pekalska, S.Verzakov, R.P.W. Duin, "Augmented embedding of
|
---|
| 53 | % dissimilarity data into (pseudo-)Euclidean spaces", Joint Workshops on S+SSPR
|
---|
| 54 | % Lecture Notes in Computer Science, vol. 4109, 613-621, 2006.
|
---|
| 55 | % 2. L. Goldfarb, A unified approach to pattern recognition, Pattern Recognition,
|
---|
| 56 | % vol.17, 575-582, 1984.
|
---|
| 57 |
|
---|
| 58 | % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com
|
---|
| 59 | % Faculty EWI, Delft University of Technology and
|
---|
| 60 | % School of Computer Science, University of Manchester
|
---|
| 61 |
|
---|
| 62 |
|
---|
| 63 |
|
---|
| 64 | function [W,sig,L] = augpsem(d,alf,pzero)
|
---|
| 65 |
|
---|
| 66 | if nargin < 3 | isempty(pzero), pzero = 0; end
|
---|
| 67 | if nargin < 2 | isempty(alf), alf = inf; end
|
---|
| 68 | if nargin < 1 | isempty(d)
|
---|
| 69 | W = mapping(mfilename,alf,pzero);
|
---|
| 70 | W = setname(W,'Augmented PE embedding');
|
---|
| 71 | return
|
---|
| 72 | end
|
---|
| 73 |
|
---|
| 74 |
|
---|
| 75 |
|
---|
| 76 | if (isdataset(d) | isa(d,'double'))
|
---|
| 77 | if ismapping(alf)
|
---|
| 78 |
|
---|
| 79 | % APPLY THE MAPPING
|
---|
| 80 | pars = getdata(alf);
|
---|
| 81 | [m,n] = size(d);
|
---|
| 82 | ds = sum(diag(+d));
|
---|
| 83 |
|
---|
| 84 | Wp = pars{1}; % projection onto positive Euclidean subspace
|
---|
| 85 | Wn = pars{2}; % projection onto negative Euclidean subspace
|
---|
| 86 | dme = pars{3}; % average square distance of the training disssimilarities
|
---|
| 87 | pzero = pars{4}; % pzero=0 -> the mean of the embedded configuration lies at 0, otherwise the mean lies at pzero
|
---|
| 88 | tsig = pars{5}; % true signature of PE embedding
|
---|
| 89 | sig = pars{6}; % signature of the augmented PE embedding
|
---|
| 90 | tol = pars{7};
|
---|
| 91 |
|
---|
| 92 | Xp = d*Wp;
|
---|
| 93 | if tsig(2) > 0,
|
---|
| 94 | Xn = d*Wn;
|
---|
| 95 | J = diag([ones(tsig(1),1); -ones(tsig(2),1)]);
|
---|
| 96 | else
|
---|
| 97 | Xn = [];
|
---|
| 98 | J = diag(ones(tsig(1),1));
|
---|
| 99 | end
|
---|
| 100 | XX = [+Xp +Xn];
|
---|
| 101 |
|
---|
| 102 | % Compute the true PE norm depending on pzero
|
---|
| 103 | if pzero > 0,
|
---|
| 104 | Xtnorm = +d(:,pzero).^2;
|
---|
| 105 | else
|
---|
| 106 | Xtnorm = mean(+d.^2,2) - 0.5*dme;
|
---|
| 107 | end
|
---|
| 108 |
|
---|
| 109 | % Compute the PE norm of the projected data
|
---|
| 110 | Xpnorm = diag(XX*J*XX');
|
---|
| 111 |
|
---|
| 112 | % Compute the square projection error
|
---|
| 113 | % In a perfect Euclidean embedding, the true norm should >= the projected norm.
|
---|
| 114 | perr = (Xtnorm - Xpnorm); % negative signs of perr indicate PE space
|
---|
| 115 |
|
---|
| 116 | % To remove noise, set very small values to zero
|
---|
| 117 | P = find(abs(perr) < tol);
|
---|
| 118 | perr(P) = 0;
|
---|
| 119 |
|
---|
| 120 | % Additional 'positive' dimension is extablish by positive projection error
|
---|
| 121 | Ip = find(perr >= 0);
|
---|
| 122 | Zp = zeros(m,1);
|
---|
| 123 | Zp(Ip,1) = sqrt(perr(Ip));
|
---|
| 124 |
|
---|
| 125 | W = Xp;
|
---|
| 126 | if sig(2) > 0,
|
---|
| 127 | % Additional 'negative' dimension is extablish by negative projection error
|
---|
| 128 | In = find(perr < 0);
|
---|
| 129 | Zn = zeros(m,1);
|
---|
| 130 | Zn(In,1) = -sqrt(abs(perr(In)));
|
---|
| 131 | W = setdat(W, [Xp Zp Xn Zn]);
|
---|
| 132 | if max(abs([Zp; Zn])) < tol & ds > tol & ~issym(d),
|
---|
| 133 | prwarning(1,'Augmented dimensions are close to zero. Perform PSEM, instead.');
|
---|
| 134 | end
|
---|
| 135 | else
|
---|
| 136 | W = setdat(W, [Xp Zp]);
|
---|
| 137 | if max(abs(Zp)) < tol & ds > tol & ~issym(d),
|
---|
| 138 | prwarning(1,'Augmented dimension is close to zero. Perform PSEM, instead.');
|
---|
| 139 | end
|
---|
| 140 | end
|
---|
| 141 | W.user = sig;
|
---|
| 142 | return
|
---|
| 143 | end
|
---|
| 144 | end
|
---|
| 145 |
|
---|
| 146 |
|
---|
| 147 | % TRAIN THE MAPPING
|
---|
| 148 | % Tolerance value used in comparisons
|
---|
| 149 | if mean(+d(:)) < 1,
|
---|
| 150 | tol = 1e-12;
|
---|
| 151 | else
|
---|
| 152 | tol = 1e-10;
|
---|
| 153 | end
|
---|
| 154 |
|
---|
| 155 | [n,m] = size(d);
|
---|
| 156 | if ~issym(d,tol),
|
---|
| 157 | prwarning(1,'Matrix should be symmetric. It is made symmetric by averaging.')
|
---|
| 158 | d = 0.5*(d+d');
|
---|
| 159 | end
|
---|
| 160 |
|
---|
| 161 | if pzero > n,
|
---|
| 162 | error('Wrong third parameter.');
|
---|
| 163 | end
|
---|
| 164 |
|
---|
| 165 | [W,tsig,L,Q] = psem(d,alf,pzero);
|
---|
| 166 | Wp = psem(W,'p');
|
---|
| 167 | Wn = [];
|
---|
| 168 | sig = tsig; % this is the signature describing augmented mapping
|
---|
| 169 | I = tsig > 0;
|
---|
| 170 | sig (I) = sig(I) + 1;
|
---|
| 171 | if tsig(2) > 0,
|
---|
| 172 | Wn = psem(W,'n');
|
---|
| 173 | end
|
---|
| 174 | dme = mean(+d(:).^2);
|
---|
| 175 |
|
---|
| 176 |
|
---|
| 177 | %%%%% ------------ THIS IS NOT USED now ------------ %%%%%
|
---|
| 178 | %% Compute the true PE norm depending on pzero
|
---|
| 179 | %if pzero > 0,
|
---|
| 180 | % Xtnorm = +d(:,pzero).^2;
|
---|
| 181 | %else
|
---|
| 182 | % Xtnorm = mean(+d.^2,2) - 0.5*dme;
|
---|
| 183 | %end
|
---|
| 184 | %
|
---|
| 185 | %% Compute the PE norm of the projected data
|
---|
| 186 | %% Note that X = Q * diag(sqrt(abs(L))), so
|
---|
| 187 | %% Xpnorm = diag (X*J*X') = diag(Q * diag(L) * Q')
|
---|
| 188 | %Xpnorm = diag(Q * diag(L) * Q');
|
---|
| 189 | %
|
---|
| 190 | %% Compute the square projection error
|
---|
| 191 | %% It is different from zero if ALF is not 0.99999999 or Inf
|
---|
| 192 | %perr = Xtnorm - Xpnorm; % negative values indicate PE space
|
---|
| 193 | %if sum(perr) < tol,
|
---|
| 194 | % perr = zeros(size(d,1),1);
|
---|
| 195 | %end
|
---|
| 196 | %%%%% ---------------------------------------------- %%%%%
|
---|
| 197 |
|
---|
| 198 | W = mapping(mfilename,'trained',{Wp,Wn,dme,pzero,tsig,sig,tol},[],m,sum(sig));
|
---|
| 199 | W = setname(W,'Augmented PE embedding');
|
---|
| 200 | return
|
---|