%DISPC Dissimilarity based Parzen classifier % % W = dispc(A) % % A should be a dissimilarity based dataset with class labels as % feature labels. % % $Id: dispc.m,v 1.2 2001/07/10 16:35:58 pavel Exp $ % Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands function w = dispc(a,v) if nargin < 1 | isempty(a) % empty call (untrained classifier) w = mapping('dispc'); elseif nargin == 1 % training [nlab,lablist,m,k,c,p] = dataset(a); [nn,nf,fl] = renumlab(lablist,getfeat(a)); if c < 2 error('Dataset should containf more than one class') end if max(nf) > c error('Feature labels of dataset do not match with class labels') end w = []; for j=1:c F = find(nf==j); L = find(nlab==j); n = ceil(sqrt(length(L))); [b,r] = sort(+a(L,F)); for f=1:length(F) h(F(f)) = b(r(n,f),F(f)); end b = {+a(find(nlab==nf(j)),j) +a(find(nlab~=nf(j)),j)}; w = [w; mapping('distrc',b,fl(nf(j),:),1,1,1)]; end % w = cnormc(w,a); forget normalisation and apriori probs for the moment elseif nargin == 2 % evaluation [m,k] = size(a); b = +v; b1 = b{1}; b2 = b{2}; n1 = length(b1); n2 = length(b2); w1 = zeros(m,1); w2 = zeros(m,1); [d R1] = sort([b1;+a]); [d R2] = sort([b2;+a]); L1 = find(R1>n1); L2 = find(R2>n2); w1(R1(L1)-n1) = (n1+2-(L1-[1:m]'))/(n1+2); w2(R2(L2)-n2) = (n2+2-(L2-[1:m]'))/(n2+2); % disp([w1;w2]) w = invsig(dataset((w1+w2)/2,getlab(a),getfeat(v))); else error('Illegal call') end