%DISNORM Normalization of a dissimilarity matrix % % V = DISNORM(D,OPT) % F = E*V % % INPUT % D NxN dissimilarity matrix or dataset, which sets the norm % E Matrix to be normalized, e.g. D itself % OPT 'max' : maximum dissimilarity is set to 1 by global rescaling % 'mean': average dissimilarity is set to 1 by global rescaling (default) % % OUTPUT % V Fixed mapping % F Normalized dissimilarity data % % DEFAULT % OPT = 'mean' % % DESCRIPTION % Operation on dissimilarity matrices, like the computation of classifiers % in dissimilarity space, may depend on the scaling of the dissimilarities % (a single scalar for the entire matrix). This routine computes a scaling % for a giving matrix, e.g. a training set and applies it to other % matrices, e.g. the same training set or based on a test set. % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com % Faculty EWI, Delft University of Technology and % School of Computer Science, University of Manchester function V = disnorm(D,opt) if nargin < 2, opt = 'mean'; end if nargin == 0 | isempty(D) V = prmapping(mfilename,{opt}); V = setname(V,'Disnorm'); return end if ~isdataset(D) D = prdataset(D,1); D = setfeatlab(D,getlabels(D)); end %DEFINE mapping if isstr(opt) % discheck(D); opt = lower(opt); if strcmp(opt,'mean') n = size(D,1); m = sum(sum(+D))/(n*(n-1)); elseif strcmp(opt,'max') m = max(D(:)); else error('Wrong OPT.') end if nargout > 1 D = D./m; end V = prmapping(mfilename,'trained',{m},[],size(D,2),size(D,2)); return; end % APPLY mapping if ismapping(opt) opt = getdata(opt,1); V = D./opt; return; end