[10] | 1 | %DISNORM Normalization of a dissimilarity matrix |
---|
| 2 | % |
---|
[18] | 3 | % V = DISNORM(D,OPT) |
---|
[10] | 4 | % F = E*V |
---|
| 5 | % |
---|
| 6 | % INPUT |
---|
| 7 | % D NxN dissimilarity matrix or dataset, which sets the norm |
---|
[18] | 8 | % E Matrix to be normalized, e.g. D itself |
---|
[10] | 9 | % OPT 'max' : maximum dissimilarity is set to 1 by global rescaling |
---|
| 10 | % 'mean': average dissimilarity is set to 1 by global rescaling (default) |
---|
| 11 | % |
---|
| 12 | % OUTPUT |
---|
| 13 | % V Fixed mapping |
---|
| 14 | % F Normalized dissimilarity data |
---|
| 15 | % |
---|
| 16 | % DEFAULT |
---|
| 17 | % OPT = 'mean' |
---|
| 18 | % |
---|
[18] | 19 | % DESCRIPTION |
---|
| 20 | % Operation on dissimilarity matrices, like the computation of classifiers |
---|
| 21 | % in dissimilarity space, may depend on the scaling of the dissimilarities |
---|
| 22 | % (a single scalar for the entire matrix). This routine computes a scaling |
---|
| 23 | % for a giving matrix, e.g. a training set and applies it to other |
---|
| 24 | % matrices, e.g. the same training set or based on a test set. |
---|
[10] | 25 | |
---|
| 26 | % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com |
---|
| 27 | % Faculty EWI, Delft University of Technology and |
---|
| 28 | % School of Computer Science, University of Manchester |
---|
| 29 | |
---|
| 30 | |
---|
| 31 | function V = disnorm(D,opt) |
---|
| 32 | if nargin < 2, |
---|
| 33 | opt = 'mean'; |
---|
| 34 | end |
---|
| 35 | |
---|
| 36 | if nargin == 0 | isempty(D) |
---|
| 37 | V = mapping(mfilename,{opt}); |
---|
| 38 | V = setname(V,'Disnorm'); |
---|
| 39 | return |
---|
| 40 | end |
---|
| 41 | |
---|
[16] | 42 | if ~isdataset(D) |
---|
| 43 | D = dataset(D,1); |
---|
| 44 | D = setfeatlab(D,getlabels(D)); |
---|
| 45 | end |
---|
| 46 | |
---|
[10] | 47 | %DEFINE mapping |
---|
| 48 | if isstr(opt) |
---|
[18] | 49 | % discheck(D); |
---|
[10] | 50 | opt = lower(opt); |
---|
| 51 | if strcmp(opt,'mean') |
---|
| 52 | n = size(D,1); |
---|
| 53 | m = sum(sum(+D))/(n*(n-1)); |
---|
| 54 | elseif strcmp(opt,'max') |
---|
| 55 | m = max(D(:)); |
---|
| 56 | else |
---|
| 57 | error('Wrong OPT.') |
---|
| 58 | end |
---|
| 59 | if nargout > 1 |
---|
| 60 | D = D./m; |
---|
| 61 | end |
---|
| 62 | V = mapping(mfilename,'trained',{m},[],size(D,2),size(D,2)); |
---|
| 63 | return; |
---|
| 64 | end |
---|
| 65 | |
---|
| 66 | |
---|
| 67 | % APPLY mapping |
---|
| 68 | if ismapping(opt) |
---|
| 69 | opt = getdata(opt,1); |
---|
| 70 | V = D./opt; |
---|
| 71 | return; |
---|
| 72 | end |
---|
| 73 | |
---|