%DISCC Dissimilarity based combining classifier % % W = discc(D,par) % % If D is a square dissimilarity matrix then the distances to each % representation object are used for building a classifier such that % sigmoid(a*d+b), can be used to estimate the posterior probability of a % new object at distance d. The scalar parameters a and b are optimized % over the training set using a maximum likelihood estimator. % W is a set of parallel classifiers such that D*W*classc yields the posterior % probabilities. Note that D*W*maxc yields the same classification results as % the NN classifier. % % par = 'loo' - (default) compute leave-one-out optimization for a and b. % it is assumed that the first objects in the training set % constitute the representation set. % 'all' - include all dissimilarities for optimization of k % (representation set should not be included in training set) % % See also mappings, datasets, classc, classd, testd, knnd % % $Id: discc.m,v 1.2 2001/07/10 16:35:58 pavel Exp $ % Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands function W = discc(d,par) % set default leave-one-out if nargin < 2 par = 'loo'; end % empty call, to handle d*knnd, or d*knnd([],par) if nargin < 1 | isempty(d) if isstr(par) % untrained classifier, par = 'loo' or 'all' W = mapping('discc',par); else % fixed classifier, par = knn W = mapping('discc','fixed',par); end return end [nlab,lablist,m,k,c,p,featlist] = dataset(d); [clab,classlist] = renumlab(featlist); c = size(classlist,1); [cl,nc] = renumlab(classlist,lablist); if size(nc,1) > c error('Object labels do not match representation set') end if isstr(par) % training (find parameters a and b) if strcmp(par,'loo') n = k*(k-1) + (m-k)*k; s = zeros(n,1); t = zeros(n,1); r = zeros(n,1); K = 0; for j=1:k if j == 1 J = 2:k; elseif j < k J = [1:(j-1) j+1:k]; else J = [1:k-1]; end s(K+1:K+k-1) = d(j,J)'; t(K+1:K+k-1) = repmat(nlab(j),k-1,1); r(K+1:K+k-1) = nlab(J); K = K+k-1; end for j=k+1:m s(K+1:K+k) = d(j,:)'; t(K+1:K+k) = repmat(nlab(j),k,1); r(K+1:K+k) = nlab(1:k); K = K+k; end w = +(dataset(s,2-(t==r))*loglc); W = mapping('discc',w,lablist,k,c,1); elseif strcmp(par,'all') n = m*k; s = zeros(n,1); t = zeros(n,1); r = zeros(n,1); K = 0; for j=1:m s(K+1:K+k) = d(j,:)'; t(K+1:K+k) = repmat(nlab(j),k,1); r(K+1:K+k) = nlab(1:k); K = K+k; end w = +(dataset(s,2-(t==r))*loglc); W = mapping('discc',w,lablist,k,c,1); else error(['Unknown option ''' par '''']) end else % testing for given mapping if isa(par,'mapping') w = +par; W = d*w(1) + w(2); else error('Second parameter should be string or mapping') end end