%COSDISTM Distance Matrix based on Inner Products % % D = COSDISTM(A,B) % OR % D = COSDISTM(A) % % INPUT % A NxK Matrix or dataset % B MxK Matrix or dataset (optional; default: B=A) % % OUTPUT % D NxM Dissimilarity matrix or prdataset; D in [0,1] % % DESCRIPTION % Computes a distance matrix D between two sets of vectors, A and B. % Distances between vectors X and Y are derived based on their inner products % (and their relations to the cosinus of the angle between them) as: % D(X,Y) = (1 - X'*Y/(||X||*||Y||)) % % If A and B are datasets, then D is a dataset as well with the labels defined % by the labels of A and the feature labels defined by the labels of B. If A is % not a dataset, but a matrix of doubles, then D is also a matrix of doubles. % % DEFAULT % B = A % % SEE ALSO % SIMDISTM, JACSIMDISTM, CORRDISTM, LPDISTM, EUDISTM % % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com % Faculty EWI, Delft University of Technology and % School of Computer Science, University of Manchester function D = cosdistm (A,B) bisa = nargin < 2; if bisa, B = A; end isda = isdataset(A); isdb = isdataset(B); a = +A; b = +B; [ra,ca] = size(a); [rb,cb] = size(b); if ca ~= cb, error ('Matrices should have equal numbers of columns'); end if ~bisa, ab = a * b'; a2 = sum(a.*a,2); b2 = sum(b.*b,2)'; D = ab ./ sqrt(a2(:,ones(rb,1)) .* b2(ones(ra,1),:)); else aa = a * a'; a2 = diag(aa); a3 = diag(aa)'; D = aa ./ sqrt(a2(:,ones(ra,1)) .* a3(ones(ra,1),:)); end D = (1 - D); D(find (D < eps)) = 0; % Set object labels and feature labels if xor(isda, isdb), prwarning(1,'One matrix is a dataset and the other not. ') end if isda, if isdb, D = setdata(A,D,getlab(B)); else D = setdata(A,D); end D.name = 'Distance matrix'; if ~isempty(A.name) D.name = [D.name ' for ' A.name]; end end return