%CLEVALD Classifier evaluation (learning curve) for dissimilarity data % % E = CLEVALD(D,CLASSF,TRAINSIZES,REPSIZE,NREPS,T) % % INPUT % D Square dissimilarity dataset % CLASSF Classifiers to be evaluated (cell array) % TRAINSIZE Vector of class sizes, used to generate subsets of D % (default [2,3,5,7,10,15,20,30,50,70,100]) % REPSIZE Representation set size per class (>=1), or fraction (<1) % (default total, training set) % NREPS Number of repetitions (default 1) % T Test dataset (default [], use remaining samples in A) % % OUTPUT % E Error structure (see PLOTE) containing training and test % errors % % DESCRIPTION % Generates at random, for all class sizes defined in TRAINSIZES, training % sets out of the dissimilarity dataset D. The representation set is either % equal to the training set (REPSIZE = []), or a fraction of it (REPSIZE <1) % or a random subset of it of a given size (REPSIZE>1). This set is used % for training the untrained classifiers CLASSF. The resulting trained % classifiers are tested on the training objects and on the left-over test % objects, or, if supplied, the testset T. This procedure is then repeated % NREPS times. % % The returned structure E contains several fields for annotating the plot % produced by PLOTE. They may be changed by the users. Removal of the field % 'apperror' (RMFIELD(E,'apperror')) suppresses the draw of the error % curves for the training set. % % Training set generation is done "with replacement" and such that for each % run the larger training sets include the smaller ones and that for all % classifiers the same training sets are used. % % This function uses the RAND random generator and thereby reproduces % if its seed is reset (see RAND). % If CLASSF uses RANDN, its seed should be reset as well. % % SEE ALSO % MAPPINGS, DATASETS, CLEVAL, TESTC, PLOTE % R.P.W. Duin, r.p.w.duin@prtools.org % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function e = cleval(a,classf,learnsizes,repsize,nreps,t) prtrace(mfilename); if (nargin < 6) t = []; end; if (nargin < 5) | isempty(nreps); nreps = 1; end; if (nargin < 4) repsize = []; end if (nargin < 3) | isempty(learnsizes); learnsizes = [2,3,5,7,10,15,20,30,50,70,100]; end; if ~iscell(classf), classf = {classf}; end % Assert that all is right. isdataset(a); issquare(a); ismapping(classf{1}); if (~isempty(t)), isdataset(t); end % Remove requested class sizes that are larger than the size of the % smallest class. mc = classsizes(a); [m,k,c] = getsize(a); toolarge = find(learnsizes >= min(mc)); if (~isempty(toolarge)) prwarning(2,['training set class sizes ' num2str(learnsizes(toolarge)) ... ' larger than the minimal class size in A; remove them']); learnsizes(toolarge) = []; end learnsizes = learnsizes(:)'; % Fill the error structure. nw = length(classf(:)); datname = getname(a); e.n = nreps; e.error = zeros(nw,length(learnsizes)); e.std = zeros(nw,length(learnsizes)); e.apperror = zeros(nw,length(learnsizes)); e.appstd = zeros(nw,length(learnsizes)); e.xvalues = learnsizes(:)'; e.xlabel = 'Training set size per class'; e.names = []; if (nreps > 1) e.ylabel= ['Averaged error (' num2str(nreps) ' experiments)']; elseif (nreps == 1) e.ylabel = 'Error'; else error('Number of repetitions NREPS should be >= 1.'); end; if (~isempty(datname)) if isempty(repsize) e.title = [datname ', Rep. Set = Train Set']; elseif repsize < 1 e.title = [datname ', Rep. size = ' num2str(repsize) ' Train size']; else e.title = [datname ', Rep. size = ' num2str(repsize) ' per class']; end end if (learnsizes(end)/learnsizes(1) > 20) e.plot = 'semilogx'; % If range too large, use a log-plot for X. end % Report progress. s1 = sprintf('cleval: %i classifiers: ',nw); prwaitbar(nw,s1); % Store the seed, to reset the random generator later for different % classifiers. seed = rand('state'); % Loop over all classifiers (with index WI). for wi = 1:nw if (~isuntrained(classf{wi})) error('Classifiers should be untrained.') end name = getname(classf{wi}); e.names = char(e.names,name); prwaitbar(nw,wi,[s1 name]); % E1 will contain the error estimates. e1 = zeros(nreps,length(learnsizes)); e0 = zeros(nreps,length(learnsizes)); % Take care that classifiers use same training set. rand('state',seed); seed2 = seed; % For NREPS repetitions... s2 = sprintf('cleval: %i repetitions: ',nreps); prwaitbar(nreps,s2); for i = 1:nreps prwaitbar(nreps,i,[s2 int2str(i)]); % Store the randomly permuted indices of samples of class CI to use in % this training set in JR(CI,:). JR = zeros(c,max(learnsizes)); for ci = 1:c JC = findnlab(a,ci); % Necessary for reproducable training sets: set the seed and store % it after generation, so that next time we will use the previous one. rand('state',seed2); JD = JC(randperm(mc(ci))); JR(ci,:) = JD(1:max(learnsizes))'; seed2 = rand('state'); end li = 0; % Index of training set. nlearns = length(learnsizes); s3 = sprintf('cleval: %i sizes: ',nlearns); prwaitbar(nreps,s3); for j = 1:nlearns nj = learnsizes(j); prwaitbar(nlearns,j,[s3 int2str(j) ' (' int2str(nj) ')']); li = li + 1; % J will contain the indices for this training set. J = []; R = []; for ci = 1:c J = [J;JR(ci,1:nj)']; if isempty(repsize) R = [R JR(ci,1:nj)]; elseif repsize < 1 R = [R JR(ci,1:ceil(repsize*nj))]; else R = [R JR(ci,1:min(nj,repsize))]; end end; w = a(J,R)*classf{wi}; % Use right classifier. e0(i,li) = a(J,R)*w*testc; if (isempty(t)) Jt = ones(m,1); Jt(J) = zeros(size(J)); Jt = find(Jt); % Don't use training set for testing. e1(i,li) = a(Jt,R)*w*testc; else e1(i,li) = t(:,R)*w*testc; end end prwaitbar(0); end prwaitbar(0); % Calculate average error and standard deviation for this classifier % (or set the latter to zero if there's been just 1 repetition). e.error(wi,:) = mean(e1,1); e.apperror(wi,:) = mean(e0,1); if (nreps == 1) e.std(wi,:) = zeros(1,size(e.std,2)); e.appstd(wi,:) = zeros(1,size(e.appstd,2)); else e.std(wi,:) = std(e1)/sqrt(nreps); e.appstd(wi,:) = std(e0)/sqrt(nreps); end end prwaitbar(0); % The first element is the empty string [], remove it. e.names(1,:) = []; return