1 | %CHECKEUCL Check whether a square dissimilarity matrix has a Euclidean behavior
|
---|
2 | %
|
---|
3 | % [NEF,NER,W] = CHECKEUCL(D)
|
---|
4 | % [NEF,NER] = CHECKEUCL(D,K)
|
---|
5 | % [NEF,NER,K] = CHECKEUCL(D,'all')
|
---|
6 | %
|
---|
7 | % INPUT
|
---|
8 | % D NxN dissimilarity matrix or dataset
|
---|
9 | % K Vector with desired subset sizes
|
---|
10 | %
|
---|
11 | % OUTPUT
|
---|
12 | % NEF Index of non-Euclidean behavior; negative eigen-fraction NEF in [0,1)
|
---|
13 | % NER Index of non-Euclidean behavior; negative eigen-ratio NER >= 0
|
---|
14 | % W Pseudo-Euclidean embedding
|
---|
15 | %
|
---|
16 | % DESCRIPTION
|
---|
17 | % Computes how well the square dissimilarity matrix D can be embedded
|
---|
18 | % in a Euclidean space.
|
---|
19 | % NER and NEF are computed by performing the Pseudo-Euclidean embedding.
|
---|
20 | % NEF is a ratio expressing the sum of magnitudes of all negative
|
---|
21 | % eigenvalues divided by the sum of magnitudes of all eigenvalues. NER is
|
---|
22 | % a ratio of the magnitude of the lowest negative eigenvalue to the largest
|
---|
23 | % positive eigenvalue.
|
---|
24 | %
|
---|
25 | % D is Euclidean if D.^2 is isometrically embeddable into a Euclidean space.
|
---|
26 | % Ideally, both NEF and NER are zero. Note that due to numerical inaccuracies
|
---|
27 | % of the emebdding procedure, both NEF and NER might be very small, e.g.
|
---|
28 | % in the order of ~1e-10, for perfect Euclidean distance data.
|
---|
29 | %
|
---|
30 | % In case a set of subset sizes K is given as many random subsets of K(i)
|
---|
31 | % objects are selected that are needed to estimate the expected NEF for
|
---|
32 | % matrices of K(i)*K(i) dissimilarities with a standard deviation of 5%.
|
---|
33 | %
|
---|
34 | % SEE ALSO
|
---|
35 | % PE_EM
|
---|
36 |
|
---|
37 | % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com
|
---|
38 | % Faculty EWI, Delft University of Technology and
|
---|
39 | % School of Computer Science, University of Manchester
|
---|
40 | %
|
---|
41 |
|
---|
42 | function [nef, ner, W] = checkeucl(D,N)
|
---|
43 |
|
---|
44 | if nargin < 2, N = []; end
|
---|
45 | alf = 0.05;
|
---|
46 | [m,k] = size(D);
|
---|
47 | if m ~= k
|
---|
48 | error('Dissimilarity matrix D should be square.')
|
---|
49 | end
|
---|
50 |
|
---|
51 | D = prdataset(D,1); % we are not interested in labels here.
|
---|
52 | D = setfeatlab(D,ones(m,1));
|
---|
53 |
|
---|
54 | if isempty(N)
|
---|
55 | W = pe_em(D);
|
---|
56 | L = getdata(W,'eval');
|
---|
57 | nef = sum(abs(L(find(L < 0))))/sum(abs(L));
|
---|
58 | ner = max(abs(L(find(L < 0)))) / max(L(find(L > 0)));
|
---|
59 | if isempty(ner), ner = 0; end
|
---|
60 | else
|
---|
61 | if ischar(N) & strcmp(N,'all')
|
---|
62 | N = [3,4,5,7,10,15,20,30,50,70,100,150,200,300,500,700,1000,1500,2000,3000];
|
---|
63 | N = [N(N<m) m];
|
---|
64 | end
|
---|
65 | npoints = length(N);
|
---|
66 | nef = zeros(1,npoints);
|
---|
67 | ner = zeros(1,npoints);
|
---|
68 | if npoints > 1
|
---|
69 | s = sprintf('checkeucl: NEF on %i points: ',npoints);
|
---|
70 | prwaitbar(npoints,s);
|
---|
71 | end
|
---|
72 | for j = 1:npoints
|
---|
73 | if npoints > 1, prwaitbar(npoints,j,[s int2str(j)]); end
|
---|
74 | n = N(j);
|
---|
75 | if n==m
|
---|
76 | [nef(j) ner(j)] = feval(mfilename,D);
|
---|
77 | else
|
---|
78 | nfe = 0;
|
---|
79 | nre = 0;
|
---|
80 | nfv = 0;
|
---|
81 | for i=1:5
|
---|
82 | [nf nr] = feval(mfilename,genddat(D,n));
|
---|
83 | nfe = nfe+nf; nfee = nfe/i;
|
---|
84 | nre = nre+nr;
|
---|
85 | nfv = nfv+nf*nf; nfvv = nfv/i;
|
---|
86 | end
|
---|
87 | if nfee == 0
|
---|
88 | acc = 0;
|
---|
89 | else
|
---|
90 | acc = sqrt(nfvv-nfee^2)/(sqrt(i)*nfee);
|
---|
91 | end
|
---|
92 | while acc > alf & i < 1000
|
---|
93 | i = i+1;
|
---|
94 | [nf nr] = feval(mfilename,genddat(D,n));
|
---|
95 | nfe = nfe+nf; nfee = nfe/i;
|
---|
96 | nre = nre+nr;
|
---|
97 | nfv = nfv+nf*nf; nfvv = nfv/i;
|
---|
98 | acc = sqrt(nfvv-nfee^2)/(sqrt(i)*nfee);
|
---|
99 | if nfee < 0.001, nfee = 0; acc = 0; end
|
---|
100 | %disp([i,round(10000*acc)])
|
---|
101 | end
|
---|
102 | nef(j) = nfee;
|
---|
103 | ner(j) = nre/i;
|
---|
104 | end
|
---|
105 | end
|
---|
106 | if npoints > 1, prwaitbar(0); end
|
---|
107 | W = N;
|
---|
108 | end
|
---|
109 |
|
---|
110 | return;
|
---|