%CHECKEUCL Check whether a square dissimilarity matrix has a Euclidean behavior % % [NEF,NER,W] = CHECKEUCL(D) % [NEF,NER] = CHECKEUCL(D,K) % [NEF,NER,K] = CHECKEUCL(D,'all') % % INPUT % D NxN dissimilarity matrix or dataset % K Vector with desired subset sizes % % OUTPUT % NEF Index of non-Euclidean behavior; negative eigen-fraction NEF in [0,1) % NER Index of non-Euclidean behavior; negative eigen-ratio NER >= 0 % W Pseudo-Euclidean embedding % % DESCRIPTION % Computes how well the square dissimilarity matrix D can be embedded % in a Euclidean space. % NER and NEF are computed by performing the Pseudo-Euclidean embedding. % NEF is a ratio expressing the sum of magnitudes of all negative % eigenvalues divided by the sum of magnitudes of all eigenvalues. NER is % a ratio of the magnitude of the lowest negative eigenvalue to the largest % positive eigenvalue. % % D is Euclidean if D.^2 is isometrically embeddable into a Euclidean space. % Ideally, both NEF and NER are zero. Note that due to numerical inaccuracies % of the emebdding procedure, both NEF and NER might be very small, e.g. % in the order of ~1e-10, for perfect Euclidean distance data. % % In case a set of subset sizes K is given as many random subsets of K(i) % objects are selected that are needed to estimate the expected NEF for % matrices of K(i)*K(i) dissimilarities with a standard deviation of 5%. % % SEE ALSO % PE_EM % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com % Faculty EWI, Delft University of Technology and % School of Computer Science, University of Manchester % function [nef, ner, W] = checkeucl(D,N) if nargin < 2, N = []; end alf = 0.05; [m,k] = size(D); if m ~= k error('Dissimilarity matrix D should be square.') end D = prdataset(D,1); % we are not interested in labels here. D = setfeatlab(D,ones(m,1)); if isempty(N) W = pe_em(D); L = getdata(W,'eval'); nef = sum(abs(L(find(L < 0))))/sum(abs(L)); ner = max(abs(L(find(L < 0)))) / max(L(find(L > 0))); if isempty(ner), ner = 0; end else if ischar(N) & strcmp(N,'all') N = [3,4,5,7,10,15,20,30,50,70,100,150,200,300,500,700,1000,1500,2000,3000]; N = [N(N 1 s = sprintf('checkeucl: NEF on %i points: ',npoints); prwaitbar(npoints,s); end for j = 1:npoints if npoints > 1, prwaitbar(npoints,j,[s int2str(j)]); end n = N(j); if n==m [nef(j) ner(j)] = feval(mfilename,D); else nfe = 0; nre = 0; nfv = 0; for i=1:5 [nf nr] = feval(mfilename,genddat(D,n)); nfe = nfe+nf; nfee = nfe/i; nre = nre+nr; nfv = nfv+nf*nf; nfvv = nfv/i; end if nfee == 0 acc = 0; else acc = sqrt(nfvv-nfee^2)/(sqrt(i)*nfee); end while acc > alf & i < 1000 i = i+1; [nf nr] = feval(mfilename,genddat(D,n)); nfe = nfe+nf; nfee = nfe/i; nre = nre+nr; nfv = nfv+nf*nf; nfvv = nfv/i; acc = sqrt(nfvv-nfee^2)/(sqrt(i)*nfee); if nfee < 0.001, nfee = 0; acc = 0; end %disp([i,round(10000*acc)]) end nef(j) = nfee; ner(j) = nre/i; end end if npoints > 1, prwaitbar(0); end W = N; end return;