[10] | 1 | %BINDISTM Dissimilarity Matrix between Binary Vectors
|
---|
| 2 | %
|
---|
| 3 | % D = BINDISTM(A,B,TYPE)
|
---|
| 4 | %
|
---|
| 5 | % INPUT
|
---|
| 6 | % A NxK Binary matrix or dataset
|
---|
| 7 | % B MxK Binary matrix or dataset (optional; default: B=A)
|
---|
| 8 | % TYPE Type of the similarity S (optional; default: 'J'):
|
---|
| 9 | % 'SM', 'Simple-match': (a+d)/(a+b+c+d)
|
---|
| 10 | % 'RR', 'Russel-Rao': a/(a+b+c+d)
|
---|
| 11 | % 'J', 'Jaccard': a/(a+b+c)
|
---|
| 12 | % 'D', 'Dice': a/(a+0.5*(b+c))
|
---|
| 13 | % 'SS', 'Sokal-Sneath': (a+d)/(a+0.5*(b+c)+d)
|
---|
| 14 | % 'RT', 'Rogers-Tanimoto':(a+d)/(a+2*(b+c)+d)
|
---|
| 15 | % 'K', 'Kulczynski': 0.5*(a/(a+b) + a/(a+c))
|
---|
| 16 | % 'A1', 'Anderberg1': a/(a+2*(b+c))
|
---|
| 17 | % 'A2', 'Anderberg2': 0.5*(a/(a+b) + a/(a+c) + d/(c+d) + d/(b+d))
|
---|
| 18 | % 'H', 'Hamman': ((a+d)-(b+c))/(a+b+c+d)
|
---|
| 19 | % 'Y', 'Yule': (a*d -b*c)/(a*d+b*c)
|
---|
| 20 | % 'P1', 'Pearson1': (a*d)/sqrt((a+b)*(a+c)*(b+d)*(c+d))
|
---|
| 21 | % 'P2', 'Pearson2': (a*d-b*c)/sqrt((a+b)*(a+c)*(b+d)*(c+d))
|
---|
| 22 | % 'O', 'Ochiai': a/sqrt((a+b)*(a+c))
|
---|
| 23 | % The distance D is computed as D=sqrt(1-S).
|
---|
| 24 | %
|
---|
| 25 | % Type of distance:
|
---|
| 26 | % 'HG', 'Hamming': (b+c)
|
---|
| 27 | % 'EU', 'Euclidean': sqrt(b+c)
|
---|
| 28 | % 'VAR','Variance': 0.25*(b+c)/(a+b+c+d)
|
---|
| 29 | % 'BC', 'Bray-Curtis': (b+c)/(2*a+b+c)
|
---|
| 30 | % 'SD', 'Size-diff': (b-c)^2/(a+b+c+d)^2
|
---|
| 31 | % 'PD', 'Pattern-diff': b*c/(a+b+c+d)^2
|
---|
| 32 | % 'SHD','Shape-diff': ((a+b+c+d)*(b_c)-(b-c)^2)/(a+b+c+d)^2;
|
---|
| 33 | %
|
---|
| 34 | % OUTPUT
|
---|
| 35 | % D NxM Dissimilarity matrix or dataset
|
---|
| 36 | %
|
---|
| 37 | % DESCRIPTION
|
---|
| 38 | % Distance between sets of binary vectors, A and B.
|
---|
| 39 | % The distances which are non-metric: 'K','A2','Y','BC','SD','PD' and 'SHD'.
|
---|
| 40 | % The distances which do not have a Euclidean behaviour: 'SS','K','A2','Y','HG',
|
---|
| 41 | % 'VAR','BC','SD','PD' and 'SHD'. If for the similarity S defined above, D is
|
---|
| 42 | % computed as D=1-S, then the following distances are non-metric: 'D','SS','K',
|
---|
| 43 | % 'A2','Y','P1','P2',and 'O', and all of the distances are non-Euclidean.
|
---|
| 44 | %
|
---|
| 45 | % NOTE
|
---|
| 46 | % In some cases the operations may be undefined such as 0/0. This results
|
---|
| 47 | % in NANs which are replaced here by zeros.
|
---|
| 48 | %
|
---|
| 49 | % If A and B are datasets, then D is a dataset as well with the labels defined
|
---|
| 50 | % by the labels of A and the feature labels defined by the labels of B. If A is
|
---|
| 51 | % not a dataset, but a matrix of doubles, then D is also a matrix of doubles.
|
---|
| 52 | %
|
---|
| 53 | % DEFAULT
|
---|
| 54 | % B = A
|
---|
| 55 | % TYPE = 'J'
|
---|
| 56 | %
|
---|
| 57 | % REFERENCE
|
---|
| 58 | % J.Gower, Metric and Euclidean Properties od Dissimilarity Coefficients.
|
---|
| 59 | % Journal of Classification, no.5, 5-48, 1986.
|
---|
| 60 | %
|
---|
| 61 |
|
---|
| 62 | % Copyright: Elzbieta Pekalska, ela.pekalska@googlemail.com
|
---|
| 63 | % Faculty EWI, Delft University of Technology and
|
---|
| 64 | % School of Computer Science, University of Manchester
|
---|
| 65 |
|
---|
| 66 |
|
---|
| 67 |
|
---|
| 68 | function D = bindistm(A,B,type)
|
---|
| 69 |
|
---|
| 70 | if nargin < 3,
|
---|
| 71 | type = 'J';
|
---|
| 72 | end
|
---|
| 73 |
|
---|
| 74 | bisa = (nargin < 2 | isempty(B));
|
---|
| 75 | if bisa,
|
---|
| 76 | B = A;
|
---|
| 77 | end
|
---|
| 78 |
|
---|
| 79 | isda = isdataset(A);
|
---|
| 80 | isdb = isdataset(B);
|
---|
| 81 | a = +A;
|
---|
| 82 | b = +B;
|
---|
| 83 |
|
---|
| 84 | [ra,ca] = size(a);
|
---|
| 85 | [rb,cb] = size(b);
|
---|
| 86 | if ca ~= cb,
|
---|
| 87 | error ('Matrices should have equal numbers of columns.');
|
---|
| 88 | end
|
---|
| 89 |
|
---|
| 90 | if any(a~=0 & a~=1) | any(b~=0 & b~=1),
|
---|
| 91 | error('Data should be binary.');
|
---|
| 92 | end
|
---|
| 93 |
|
---|
| 94 | Aij = a*b';
|
---|
| 95 | Bij = a*(1-b)';
|
---|
| 96 | Cij = (1-a)*b';
|
---|
| 97 | Dij = (1-a)*(1-b)';
|
---|
| 98 |
|
---|
| 99 | D = [];
|
---|
| 100 | switch lower(type)
|
---|
| 101 | case {'hg','hamming'}
|
---|
| 102 | D = (Bij+Cij);
|
---|
| 103 | case {'eu','euclidean'}
|
---|
| 104 | D = sqrt(Bij+Cij);
|
---|
| 105 | case {'var','variance'}
|
---|
| 106 | D = 0.25*(Bij+Cij)/ca;
|
---|
| 107 | case {'bc','bray-curtis'}
|
---|
| 108 | D = (Bij+Cij)./(2*Aij+Bij+Cij);
|
---|
| 109 | case {'sd','size-diff'}
|
---|
| 110 | D = (Bij-Cij).^2./ca^2;
|
---|
| 111 | case {'pd','pattern-diff'}
|
---|
| 112 | D = Bij.*Cij./ca^2;
|
---|
| 113 | case {'shd','shape-diff'}
|
---|
| 114 | D = (ca*(Bij_Cij)-(Bij-Cij).^2)./ca^2;
|
---|
| 115 | %
|
---|
| 116 | case {'sm','simple-match'}
|
---|
| 117 | S = (Aij+Dij) ./ ca;
|
---|
| 118 | case {'rr','russel-rao'}
|
---|
| 119 | S = Aij ./ ca;
|
---|
| 120 | case {'j','jaccard'}
|
---|
| 121 | S = Aij ./ (Aij+Bij+Cij);
|
---|
| 122 | case {'d','dice'}
|
---|
| 123 | S = Aij ./ (Aij+0.5*(Bij+Cij));
|
---|
| 124 | case {'ss','sokal-sneath'}
|
---|
| 125 | S = (Aij +Dij)./ (Aij + 0.5*(Bij+Cij) + Dij);
|
---|
| 126 | case {'a1','anderberg1'}
|
---|
| 127 | S = Aij./ (Aij + 2*(Bij+Cij));
|
---|
| 128 | case {'rt','rogers-tanimoto'}
|
---|
| 129 | S = (Aij +Dij)./ (Aij + 2*(Bij+Cij)+Dij);
|
---|
| 130 | case {'k','kulczynski'}
|
---|
| 131 | S = 0.5*(Aij./ (Aij + Bij) + Aij./ (Aij + Cij));
|
---|
| 132 | case {'a2','anderberg2'}
|
---|
| 133 | S = 0.5*(Aij./ (Aij + Bij) + Aij./ (Aij + Cij) + Dij./ (Cij + Dij) + Dij./ (Bij + Dij) );
|
---|
| 134 | case {'h','hamman'}
|
---|
| 135 | S = ((Aij + Dij) - (Bij + Cij))/ca;
|
---|
| 136 | case {'y','yule'}
|
---|
| 137 | S = (Aij .* Dij - Bij .* Cij) ./ (Aij .* Dij + Bij .* Cij);
|
---|
| 138 | case {'p1','pearson1'}
|
---|
| 139 | S = (Aij .* Dij) ./ sqrt((Aij + Bij) .* (Aij + Cij).*(Bij + Dij).*(Cij + Dij));
|
---|
| 140 | case {'p2','pearson2'}
|
---|
| 141 | S = (Aij .* Dij - Bij .* Cij) ./ sqrt((Aij + Bij) .* (Aij + Cij).*(Bij + Dij).*(Cij + Dij));
|
---|
| 142 | case {'o','ochiai'}
|
---|
| 143 | S = Aij / sqrt((Aij + Bij) .* (Aij + Cij));
|
---|
| 144 | othwerwise
|
---|
| 145 | error('Wrong type.');
|
---|
| 146 | end
|
---|
| 147 |
|
---|
| 148 | if isempty(D),
|
---|
| 149 | D = sqrt(1 - S);
|
---|
| 150 | end
|
---|
| 151 |
|
---|
| 152 | % Replace potential NaNs by zeros
|
---|
| 153 | D(find(isnan(D))) = 0;
|
---|
| 154 |
|
---|
| 155 | % Check numerical inaccuracy
|
---|
| 156 | D(find(D<eps)) = 0;
|
---|
| 157 |
|
---|
| 158 | % Set object labels and feature labels
|
---|
| 159 | if xor(isda, isdb),
|
---|
| 160 | prwarning(1,'One matrix is a dataset and the other not. ')
|
---|
| 161 | end
|
---|
| 162 | if isda,
|
---|
| 163 | if isdb,
|
---|
| 164 | D = setdata(A,D,getlab(B));
|
---|
| 165 | else
|
---|
| 166 | D = setdata(A,D);
|
---|
| 167 | end
|
---|
| 168 | D.name = 'Distance matrix';
|
---|
| 169 | if ~isempty(A.name)
|
---|
| 170 | D.name = [D.name ' for ' A.name];
|
---|
| 171 | end
|
---|
| 172 | end
|
---|
| 173 | return
|
---|