% DisTools Table of Contents % 23-Nov-2009_17:27 % % This Matlab toolbox for the analysis of dissimilarity data works only % if also the pattern recognition toolbox PRTools is available. % See http://prtools.org % % E. Pekalska, ela.pekalska@googlemail.com, University of Manchester % R.P.W. Duin, r.duin@ieee.org, Delft University of Technology % % Characterization of dissimilarity matrices % ------------------------------------------ % CHECKEUCL Check whether a square dissimilarity matrix has a Euclidean behavior % CHECKTR Check whether a square dissimilarity matrix obeys triangle inequality % CHARDMAT Fiand several characteristic of (dis)similarity data % CORRTR Correct a square dissimilarity matrix to obey the triangle inequality % DISCHECK Dissimilarity matrix check % DISNORM Normalization of a dissimilarity matrix % DISSTAT Basic statistics of the dissimilarity matrix % ISSQUARE Check whether a matrix is square % ISSYM Check whether a matrix is symmetric % ASYMMETRY Compute asymmetry of dissimilarity matrix % NNE Leave-one-out Nearest Neighbor error on a dissimilarity matrix % NNERR Exact expected NN error from a dissimilarity matrix % % Dissimilarity Measures % ----------------------------------------------- % COSDISTM Distance matrix based on inner products % EUDISTM Euclidean distance matrix % HAMDISTM Hamming distance matrix between binary vectors % HAUSDM Hausdorff and modified Hausdorff distance between datasets of image blobs % % Transformations % DISSIMT Fixed DISsimilarity-SIMilarity transformation % MAKESYM Make a matrix symmetric % PE_EM Pseudo-Euclidean embedding (includes Classical Scaling as a special case) % % Classification in Pseudo-Euclidean Space and indefinite kernels % ----------------------------------------------- % SETSIG Set PE signature for mappings or datasets % GETSIG Set PE signature for mappings or datasets % ISPE_DATASET Test dataset for PE signature setting % ISPE_EM Test mapping for PE signature setting % PE_DISTM Square pseudo-Euclidean distance between two datasets % PE_KERNELM Compute kernel in PE space % PE_MTIMES Matrix multiplication (inner product) in PE space % PE_PARZENC Parzen classifier in PE space % PE_KNNC KNN classifier in PE space % PE_NMC Nearest mean classifier in PE space % PE_EM Pseudo-Euclidean linear embedding % PLOTSPECTRUM Plot spectrum of eigenvalues % % Routines supporting in learning from dissimilarity matrices % ----------------------------------------------------------------------- % CROSSVALD Cross-validation error for dissimilarity data % CLEVALD Classifier evaluation (learning curve) for dissimilarity data % DISSPACES Compute various spaces out of a dissimilarity matrix % GENDDAT Generate random training and test sets for dissimilarity data % GENREP Generate a representation set % GENREPI Generate indices for representation, learning and testing sets % SELCDAT Select Class Subset from a Square Dissimilarity Dataset % PROTSELFD Forward prototype selection % DLPC LP-classifier on dissimilarity (proximity) data % KNNDC K-Nearest Neighbor classifier for dissimilarity matrices % PARZENDDC Parzen classifier for dissimilarity matrices % TESTKD Test k-NN classifier for dissimilarity data % TESTPD Test Parzen classifier for dissimilarity data % % EXAMPLES % -------- % CROSSVALD_EX Crossvalidation of several classifiers