source: distools/Contents.m @ 133

Last change on this file since 133 was 18, checked in by bduin, 13 years ago

clevald, parzenddc, parzend_map and kem added

File size: 3.6 KB
RevLine 
[10]1%    DisTools Table of Contents
2%   23-Nov-2009_17:27
3%
4%   This Matlab toolbox for the analysis of dissimilarity data works only
5%   if also the pattern recognition toolbox PRTools is available.
6%   See http://prtools.org
7%
8%     E. Pekalska,  ela.pekalska@googlemail.com, University of Manchester
9%     R.P.W. Duin,  r.duin@ieee.org, Delft University of Technology
10%
11%  Characterization of dissimilarity matrices
12%  ------------------------------------------
13%  CHECKEUCL    Check whether a square dissimilarity matrix has a Euclidean behavior
14%  CHECKTR      Check whether a square dissimilarity matrix obeys triangle inequality
15%  CHARDMAT     Fiand several characteristic of (dis)similarity data
16%  CORRTR       Correct a square dissimilarity matrix to obey the triangle inequality
17%  DISCHECK     Dissimilarity matrix check
18%  DISNORM      Normalization of a dissimilarity matrix
19%  DISSTAT      Basic statistics of the dissimilarity matrix
20%  ISSQUARE     Check whether a matrix is square
21%  ISSYM        Check whether a matrix is symmetric
22%  ASYMMETRY    Compute asymmetry of dissimilarity matrix
23%  NNE          Leave-one-out Nearest Neighbor error on a dissimilarity matrix
24%  NNERR        Exact expected NN error from a dissimilarity matrix
25
26%  Dissimilarity Measures
27%  -----------------------------------------------
28%  COSDISTM     Distance matrix based on inner products
29%  EUDISTM      Euclidean distance matrix
30%  HAMDISTM     Hamming distance matrix between binary vectors
31%  HAUSDM       Hausdorff and modified Hausdorff distance between datasets of image blobs
32
33%  Transformations
34%  DISSIMT      Fixed DISsimilarity-SIMilarity transformation
35%  MAKESYM      Make a matrix symmetric
36%  PE_EM        Pseudo-Euclidean embedding (includes Classical Scaling as a special case)       
37
38%  Classification in Pseudo-Euclidean Space and indefinite kernels
39%  -----------------------------------------------
40%  SETSIG       Set PE signature for mappings or datasets
41%  GETSIG       Set PE signature for mappings or datasets
42%  ISPE_DATASET Test dataset for PE signature setting
43%  ISPE_EM      Test mapping for PE signature setting
44%  PE_DISTM     Square pseudo-Euclidean distance between two datasets
45%  PE_KERNELM   Compute kernel in PE space
46%  PE_MTIMES    Matrix multiplication (inner product) in PE space
47%  PE_PARZENC   Parzen classifier in PE space
48%  PE_KNNC      KNN classifier in PE space
49%  PE_NMC       Nearest mean classifier in PE space
50%  PE_EM        Pseudo-Euclidean linear embedding
51%  PLOTSPECTRUM Plot spectrum of eigenvalues
52
53%  Routines supporting in learning from dissimilarity matrices
54%  -----------------------------------------------------------------------
[18]55%  CROSSVALD    Cross-validation error for dissimilarity data
56%  CLEVALD      Classifier evaluation (learning curve) for dissimilarity data
[10]57%  DISSPACES    Compute various spaces out of a dissimilarity matrix
58%  GENDDAT      Generate random training and test sets for dissimilarity data
59%  GENREP       Generate a representation set
60%  GENREPI      Generate indices for representation, learning and testing sets
61%  SELCDAT      Select Class Subset from a Square Dissimilarity Dataset
62%  PROTSELFD    Forward prototype selection   
63%  DLPC         LP-classifier on dissimilarity (proximity) data
64%  KNNDC        K-Nearest Neighbor classifier for dissimilarity matrices
65%  PARZENDDC    Parzen classifier for dissimilarity matrices
66%  TESTKD       Test k-NN classifier for dissimilarity data
67%  TESTPD       Test Parzen classifier for dissimilarity data
68%
69%  EXAMPLES
70%  --------
71%  CROSSVALD_EX Crossvalidation of several classifiers
Note: See TracBrowser for help on using the repository browser.