% M = ZERNIKE_MOMENTS (IM, ORDER) % % Calculates Zernike moments up to and including ORDER (<= 12) on image IM. % Default: ORDER = 12. function m = zernike_moments (im, order) if (nargin < 2), order = 12; end; if (order < 1 | order > 12), error ('order should be 1..12'); end; % xx, yy are grids with co-ordinates [xs,ys] = size(im); [xx,yy] = meshgrid(-(ys-1)/2:1:(ys-1)/2,-(xs-1)/2:1:(xs-1)/2); % Calculate center of mass and distance of any pixel to it m = moments (im,[0 1 0],[0 0 1],0,0); xc = m(2)/m(1); yc = m(3)/m(1); xx = xx - xc; yy = yy - yc; len = sqrt(xx.^2+yy.^2); max_len = max(max(len)); % Map pixels to unit circle; prevent divide by zero. rho = len/max_len; rho_tmp = rho; rho_tmp(find(rho==0)) = 1; theta = acos((xx/max_len)./rho_tmp); % Flip angle for pixels above center of mass yneg = length(find(yy(:,1)<0)); theta(:,1:yneg) = 2*pi - theta(:,1:yneg); % Calculate coefficients c = zeros(order,order); s = zeros(order,order); i = 1; for n = 2:order for l = n:-2:0 r = polynomial (n,l,rho); c = sum(sum(r.*cos(l*theta)))*((n+1)/(pi*max_len^2)); s = sum(sum(r.*sin(l*theta)))*((n+1)/(pi*max_len^2)); m(i) = sqrt(c^2+s^2); i = i + 1; end; end; return function p = polynomial (n,l,rho) switch (n) case 2, switch (l) case 0, p = 2*(rho.^2)-1; case 2, p = (rho.^2); end; case 3, switch (l) case 1, p = 3*(rho.^3)-2*rho; case 3, p = (rho.^3); end; case 4, switch (l) case 0, p = 6*(rho.^4)-6*(rho.^2)+1; case 2, p = 4*(rho.^4)-3*(rho.^2); case 4, p = (rho.^4); end; case 5, switch (l) case 1, p = 10*(rho.^5)-12*(rho.^3)+3*rho; case 3, p = 5*(rho.^5)- 4*(rho.^3); case 5, p = (rho.^5); end; case 6, switch (l) case 0, p = 20*(rho.^6)-30*(rho.^4)+12*(rho.^2)-1; case 2, p = 15*(rho.^6)-20*(rho.^4)+ 6*(rho.^2); case 4, p = 6*(rho.^6)- 5*(rho.^4); case 6, p = (rho.^6); end; case 7, switch (l) case 1, p = 35*(rho.^7)-60*(rho.^5)+30*(rho.^3)-4*rho; case 3, p = 21*(rho.^7)-30*(rho.^5)+10*(rho.^3); case 5, p = 7*(rho.^7)- 6*(rho.^5); case 7, p = (rho.^7); end; case 8, switch (l) case 0, p = 70*(rho.^8)-140*(rho.^6)+90*(rho.^4)-20*(rho.^2)+1; case 2, p = 56*(rho.^8)-105*(rho.^6)+60*(rho.^4)-10*(rho.^2); case 4, p = 28*(rho.^8)- 42*(rho.^6)+15*(rho.^4); case 6, p = 8*(rho.^8)- 7*(rho.^6); case 8, p = (rho.^8); end; case 9, switch (l) case 1, p = 126*(rho.^9)-280*(rho.^7)+210*(rho.^5)-60*(rho.^3)+5*rho; case 3, p = 84*(rho.^9)-168*(rho.^7)+105*(rho.^5)-20*(rho.^3); case 5, p = 36*(rho.^9)- 56*(rho.^7)+ 21*(rho.^5); case 7, p = 9*(rho.^9)- 8*(rho.^7); case 9, p = (rho.^9); end; case 10, switch (l) case 0, p = 252*(rho.^10)-630*(rho.^8)+560*(rho.^6)-210*(rho.^4)+30*(rho.^2)-1; case 2, p = 210*(rho.^10)-504*(rho.^8)+420*(rho.^6)-140*(rho.^4)+15*(rho.^2); case 4, p = 129*(rho.^10)-252*(rho.^8)+168*(rho.^6)- 35*(rho.^4); case 6, p = 45*(rho.^10)- 72*(rho.^8)+ 28*(rho.^6); case 8, p = 10*(rho.^10)- 9*(rho.^8); case 10, p = (rho.^10); end; case 11, switch (l) case 1, p = 462*(rho.^11)-1260*(rho.^9)+1260*(rho.^7)-560*(rho.^5)+105*(rho.^3)-6*rho; case 3, p = 330*(rho.^11)- 840*(rho.^9)+ 756*(rho.^7)-280*(rho.^5)+ 35*(rho.^3); case 5, p = 165*(rho.^11)- 360*(rho.^9)+ 252*(rho.^7)- 56*(rho.^5); case 7, p = 55*(rho.^11)- 90*(rho.^9)+ 36*(rho.^7); case 9, p = 11*(rho.^11)- 10*(rho.^9); case 11, p = (rho.^11); end; case 12, switch (l) case 0, p = 924*(rho.^12)-2772*(rho.^10)+3150*(rho.^8)-1680*(rho.^6)+420*(rho.^4)-42*(rho.^2)+1; case 2, p = 792*(rho.^12)-2310*(rho.^10)+2520*(rho.^8)-1260*(rho.^6)+280*(rho.^4)-21*(rho.^2); case 4, p = 495*(rho.^12)-1320*(rho.^10)+1260*(rho.^8)- 504*(rho.^6)+ 70*(rho.^4); case 6, p = 220*(rho.^12)- 495*(rho.^10)+ 360*(rho.^8)- 84*(rho.^6); case 8, p = 66*(rho.^12)- 110*(rho.^10)+ 45*(rho.^8); case 10, p = 12*(rho.^12)- 11*(rho.^10); case 12, p = (rho.^12); end; end; return