[68] | 1 |
|
---|
[72] | 2 | load('birds20130709.mat');
|
---|
[68] | 3 |
|
---|
| 4 |
|
---|
| 5 | w = {
|
---|
| 6 |
|
---|
[72] | 7 | %milvector([],'e')*scalem([],'variance')*loglc2*classc;
|
---|
| 8 |
|
---|
| 9 | scalem([],'variance')*milproxm([],'meanmin')*scalem([],'variance')*loglc2;
|
---|
[68] | 10 |
|
---|
| 11 |
|
---|
| 12 | };
|
---|
| 13 | wnames = getwnames(w);
|
---|
| 14 |
|
---|
| 15 | %set other parameters and storage:
|
---|
| 16 | nrfolds = 5;
|
---|
| 17 | nrw = length(w);
|
---|
| 18 | err = repmat(NaN,[nrw 2 nrfolds]);
|
---|
| 19 |
|
---|
| 20 | % start the loops:
|
---|
| 21 | I = nrfolds;
|
---|
| 22 | for i=1:nrfolds
|
---|
| 23 |
|
---|
| 24 | dd_message(3,'%d/%d ',i,nrfolds);
|
---|
| 25 | [x,z,I] = milcrossval(a,I);
|
---|
| 26 |
|
---|
| 27 | for j=1:nrw
|
---|
| 28 | dd_message(4,'.');
|
---|
| 29 | w_tr = x*w{j};
|
---|
| 30 | out = z*w_tr;
|
---|
| 31 | err(j,1,i) = out*testd;
|
---|
| 32 | err(j,2,i) = dd_auc(out*milroc);
|
---|
| 33 | end
|
---|
| 34 | end
|
---|
| 35 | dd_message(3,'\n');
|
---|
| 36 |
|
---|
| 37 | % and store everything nicely:
|
---|
| 38 | if isempty(wnames) wnames = getwnames(w); end
|
---|
| 39 | R = results(err,wnames,{'cl.error' 'AUC'},(1:nrfolds)');
|
---|
| 40 | R = setdimname(R,'classifier','dataset','run');
|
---|
| 41 | R = setname(R,getname(a));
|
---|
| 42 |
|
---|
| 43 | % And give some output to the command line:
|
---|
| 44 | fprintf('\n%s\n\n',repmat('=',1,50));
|
---|
| 45 | a
|
---|
| 46 | S = average(100*R,3,'max1','dep');
|
---|
| 47 | show(S,'text','%4.1f');
|
---|
| 48 |
|
---|