1 | %i,j,p
|
---|
2 | %i
|
---|
3 | %The rec_id of a recording in the test set. Only include predictions for recordings in the test set.
|
---|
4 | %j
|
---|
5 | %The species/class #. For each rec_id, there should be 19 lines for species 0 through 18.
|
---|
6 | %p
|
---|
7 | %Your classifier's prediction about the probability that species j is present in rec_id i. This must be in the range [0,1].
|
---|
8 |
|
---|
9 |
|
---|
10 | load('birds20130709.mat');
|
---|
11 |
|
---|
12 | ixtrain = find(J == 0);
|
---|
13 | ixtest = find(J == 1);
|
---|
14 |
|
---|
15 | z=a(ixtest,:);
|
---|
16 | [bags, labs, bagid] = getbags(z);
|
---|
17 |
|
---|
18 |
|
---|
19 |
|
---|
20 | C = 19;
|
---|
21 | predictions = nan(length(bagid), 19);
|
---|
22 |
|
---|
23 |
|
---|
24 | u = milvector([],'e')*scalem([],'variance')*loglc2*classc;
|
---|
25 |
|
---|
26 | %For each class, train a classifier
|
---|
27 | for i=1:C
|
---|
28 | a = changelablist(a,i+1); %Bird 1 is lablist 2, etc
|
---|
29 | x = a(ixtrain, :);
|
---|
30 | z = a(ixtest,:);
|
---|
31 |
|
---|
32 | w = x*u;
|
---|
33 | out = z*w;
|
---|
34 |
|
---|
35 | try
|
---|
36 | testc(out,'auc')
|
---|
37 | catch
|
---|
38 | end
|
---|
39 |
|
---|
40 | predictions(:,i) = out(:,1);
|
---|
41 | end
|
---|
42 |
|
---|
43 |
|
---|
44 |
|
---|
45 |
|
---|
46 |
|
---|
47 |
|
---|
48 | %Write everything to a CSV file
|
---|
49 |
|
---|
50 |
|
---|
51 | fid = fopen('pred20130709.csv', 'w');
|
---|
52 | fprintf(fid, '%s,%s,%s\n', 'rec_id', 'species', 'probability');
|
---|
53 |
|
---|
54 | for i=1:length(bagid)
|
---|
55 |
|
---|
56 | for j=1:C
|
---|
57 | if (i==length(bagid) && j==C)
|
---|
58 | fprintf(fid, '%d,%d,%f', bagid(i), j-1, predictions(i,j));
|
---|
59 | else
|
---|
60 | fprintf(fid, '%d,%d,%f\n', bagid(i), j-1, predictions(i,j));
|
---|
61 | end
|
---|
62 | end
|
---|
63 | end
|
---|
64 | fclose(fid);
|
---|